Last updated: 2025-09-05

Checks: 7 0

Knit directory: muse/

This reproducible R Markdown analysis was created with workflowr (version 1.7.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20200712) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version bfebc82. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rproj.user/
    Ignored:    data/1M_neurons_filtered_gene_bc_matrices_h5.h5
    Ignored:    data/293t/
    Ignored:    data/293t_3t3_filtered_gene_bc_matrices.tar.gz
    Ignored:    data/293t_filtered_gene_bc_matrices.tar.gz
    Ignored:    data/5k_Human_Donor1_PBMC_3p_gem-x_5k_Human_Donor1_PBMC_3p_gem-x_count_sample_filtered_feature_bc_matrix.h5
    Ignored:    data/5k_Human_Donor2_PBMC_3p_gem-x_5k_Human_Donor2_PBMC_3p_gem-x_count_sample_filtered_feature_bc_matrix.h5
    Ignored:    data/5k_Human_Donor3_PBMC_3p_gem-x_5k_Human_Donor3_PBMC_3p_gem-x_count_sample_filtered_feature_bc_matrix.h5
    Ignored:    data/5k_Human_Donor4_PBMC_3p_gem-x_5k_Human_Donor4_PBMC_3p_gem-x_count_sample_filtered_feature_bc_matrix.h5
    Ignored:    data/97516b79-8d08-46a6-b329-5d0a25b0be98.h5ad
    Ignored:    data/Parent_SC3v3_Human_Glioblastoma_filtered_feature_bc_matrix.tar.gz
    Ignored:    data/brain_counts/
    Ignored:    data/cl.obo
    Ignored:    data/cl.owl
    Ignored:    data/jurkat/
    Ignored:    data/jurkat:293t_50:50_filtered_gene_bc_matrices.tar.gz
    Ignored:    data/jurkat_293t/
    Ignored:    data/jurkat_filtered_gene_bc_matrices.tar.gz
    Ignored:    data/pbmc20k/
    Ignored:    data/pbmc20k_seurat/
    Ignored:    data/pbmc3k.h5ad
    Ignored:    data/pbmc3k/
    Ignored:    data/pbmc3k_bpcells_mat/
    Ignored:    data/pbmc3k_export.mtx
    Ignored:    data/pbmc3k_matrix.mtx
    Ignored:    data/pbmc3k_seurat.rds
    Ignored:    data/pbmc4k_filtered_gene_bc_matrices.tar.gz
    Ignored:    data/pbmc_1k_v3_filtered_feature_bc_matrix.h5
    Ignored:    data/pbmc_1k_v3_raw_feature_bc_matrix.h5
    Ignored:    data/refdata-gex-GRCh38-2020-A.tar.gz
    Ignored:    data/seurat_1m_neuron.rds
    Ignored:    data/t_3k_filtered_gene_bc_matrices.tar.gz
    Ignored:    r_packages_4.4.1/
    Ignored:    r_packages_4.5.0/

Untracked files:
    Untracked:  analysis/bioc_scrnaseq.Rmd
    Untracked:  bpcells_matrix/
    Untracked:  data/Caenorhabditis_elegans.WBcel235.113.gtf.gz
    Untracked:  data/GCF_043380555.1-RS_2024_12_gene_ontology.gaf.gz
    Untracked:  data/arab.rds
    Untracked:  data/astronomicalunit.csv
    Untracked:  data/ensembl_113_human_mouse_homologues.csv
    Untracked:  data/femaleMiceWeights.csv
    Untracked:  m3/

Unstaged changes:
    Modified:   analysis/isoform_switch_analyzer.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/biomart_homologues.Rmd) and HTML (docs/biomart_homologues.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd bfebc82 Dave Tang 2025-09-05 All human mouse homologues for Ensembl 113
html 2d0dd8f Dave Tang 2025-09-04 Build site.
Rmd 87b461f Dave Tang 2025-09-04 Using biomaRt to get homologues

Installation

To begin, install the {biomaRt} package.

if (!require("BiocManager", quietly = TRUE))
    install.packages("BiocManager")

BiocManager::install("biomaRt")

Package

Load package.

suppressPackageStartupMessages(library(biomaRt))
packageVersion("biomaRt")
[1] '2.64.0'

Getting started

List the available BioMart databases.

listMarts()
               biomart                version
1 ENSEMBL_MART_ENSEMBL      Ensembl Genes 115
2   ENSEMBL_MART_MOUSE      Mouse strains 115
3     ENSEMBL_MART_SNP  Ensembl Variation 115
4 ENSEMBL_MART_FUNCGEN Ensembl Regulation 115

Connect to the selected BioMart database by using useMart().

ensembl <- useMart("ENSEMBL_MART_ENSEMBL")
avail_datasets <- listDatasets(ensembl)
head(avail_datasets)
                       dataset                           description
1 abrachyrhynchus_gene_ensembl Pink-footed goose genes (ASM259213v1)
2     acalliptera_gene_ensembl      Eastern happy genes (fAstCal1.3)
3   acarolinensis_gene_ensembl       Green anole genes (AnoCar2.0v2)
4    acchrysaetos_gene_ensembl       Golden eagle genes (bAquChr1.2)
5    acitrinellus_gene_ensembl        Midas cichlid genes (Midas_v5)
6    amelanoleuca_gene_ensembl       Giant panda genes (ASM200744v2)
      version
1 ASM259213v1
2  fAstCal1.3
3 AnoCar2.0v2
4  bAquChr1.2
5    Midas_v5
6 ASM200744v2

Look for human datasets by searching the description column.

idx <- grep('human', avail_datasets$description, ignore.case = TRUE)
avail_datasets[idx, ]
                 dataset              description    version
80 hsapiens_gene_ensembl Human genes (GRCh38.p14) GRCh38.p14

Connect to the selected BioMart database and human dataset.

ensembl <- useMart("ensembl", dataset=avail_datasets[idx, 'dataset'])
ensembl
Object of class 'Mart':
  Using the ENSEMBL_MART_ENSEMBL BioMart database
  Using the hsapiens_gene_ensembl dataset

Building a query, requires three things:

  1. filters
  2. attributes
  3. values

Use listFilters() to show available filters.

avail_filters <- listFilters(ensembl)
head(avail_filters)
             name              description
1 chromosome_name Chromosome/scaffold name
2           start                    Start
3             end                      End
4      band_start               Band Start
5        band_end                 Band End
6    marker_start             Marker Start

Use listAttributes() to show available attributes.

avail_attributes <- listAttributes(ensembl)
head(avail_attributes)
                           name                  description         page
1               ensembl_gene_id               Gene stable ID feature_page
2       ensembl_gene_id_version       Gene stable ID version feature_page
3         ensembl_transcript_id         Transcript stable ID feature_page
4 ensembl_transcript_id_version Transcript stable ID version feature_page
5            ensembl_peptide_id            Protein stable ID feature_page
6    ensembl_peptide_id_version    Protein stable ID version feature_page

Look for mouse homologues.

grep('homolog', avail_attributes$name, ignore.case = TRUE, value = TRUE) |>
  grep('mmus', x = _, ignore.case = TRUE, value = TRUE) -> wanted_attr

wanted_attr <- c('ensembl_gene_id', wanted_attr)
wanted_attr
 [1] "ensembl_gene_id"                               
 [2] "mmusculus_homolog_ensembl_gene"                
 [3] "mmusculus_homolog_associated_gene_name"        
 [4] "mmusculus_homolog_ensembl_peptide"             
 [5] "mmusculus_homolog_chromosome"                  
 [6] "mmusculus_homolog_chrom_start"                 
 [7] "mmusculus_homolog_chrom_end"                   
 [8] "mmusculus_homolog_canonical_transcript_protein"
 [9] "mmusculus_homolog_subtype"                     
[10] "mmusculus_homolog_orthology_type"              
[11] "mmusculus_homolog_perc_id"                     
[12] "mmusculus_homolog_perc_id_r1"                  
[13] "mmusculus_homolog_goc_score"                   
[14] "mmusculus_homolog_wga_coverage"                
[15] "mmusculus_homolog_orthology_confidence"        

ENSG00000206172 (HBA1).

my_gene <- 'ENSG00000206172'

getBM(
  attributes = wanted_attr,
  filters = "ensembl_gene_id",
  values = my_gene,
  mart = ensembl
) -> my_res

t(my_res)
                                               [,1]                
ensembl_gene_id                                "ENSG00000206172"   
mmusculus_homolog_ensembl_gene                 "ENSMUSG00000069919"
mmusculus_homolog_associated_gene_name         "Hba-a1"            
mmusculus_homolog_ensembl_peptide              "ENSMUSP00000090897"
mmusculus_homolog_chromosome                   "11"                
mmusculus_homolog_chrom_start                  "32233511"          
mmusculus_homolog_chrom_end                    "32234465"          
mmusculus_homolog_canonical_transcript_protein "ENSP00000322421"   
mmusculus_homolog_subtype                      "Boreoeutheria"     
mmusculus_homolog_orthology_type               "ortholog_many2many"
mmusculus_homolog_perc_id                      "86.6197"           
mmusculus_homolog_perc_id_r1                   "86.6197"           
mmusculus_homolog_goc_score                    "75"                
mmusculus_homolog_wga_coverage                 "0"                 
mmusculus_homolog_orthology_confidence         "1"                 
                                               [,2]                
ensembl_gene_id                                "ENSG00000206172"   
mmusculus_homolog_ensembl_gene                 "ENSMUSG00000069917"
mmusculus_homolog_associated_gene_name         "Hba-a2"            
mmusculus_homolog_ensembl_peptide              "ENSMUSP00000090895"
mmusculus_homolog_chromosome                   "11"                
mmusculus_homolog_chrom_start                  "32246489"          
mmusculus_homolog_chrom_end                    "32247298"          
mmusculus_homolog_canonical_transcript_protein "ENSP00000322421"   
mmusculus_homolog_subtype                      "Boreoeutheria"     
mmusculus_homolog_orthology_type               "ortholog_many2many"
mmusculus_homolog_perc_id                      "86.6197"           
mmusculus_homolog_perc_id_r1                   "86.6197"           
mmusculus_homolog_goc_score                    "25"                
mmusculus_homolog_wga_coverage                 "0"                 
mmusculus_homolog_orthology_confidence         "0"                 

I manually slugged through the Compara database and found that ENSG00000207721 (MIR186) should have a one-to-one ortholog with ENSMUSG00000065431 (Mir186).

my_gene <- 'ENSG00000207721'

getBM(
  attributes = wanted_attr,
  filters = "ensembl_gene_id",
  values = my_gene,
  mart = ensembl
) -> my_res

t(my_res)
                                               [,1]                
ensembl_gene_id                                "ENSG00000207721"   
mmusculus_homolog_ensembl_gene                 "ENSMUSG00000065431"
mmusculus_homolog_associated_gene_name         "Mir186"            
mmusculus_homolog_ensembl_peptide              "ENSMUST00000083497"
mmusculus_homolog_chromosome                   "3"                 
mmusculus_homolog_chrom_start                  "157249916"         
mmusculus_homolog_chrom_end                    "157249986"         
mmusculus_homolog_canonical_transcript_protein "ENST00000384988"   
mmusculus_homolog_subtype                      "Eutheria"          
mmusculus_homolog_orthology_type               "ortholog_one2one"  
mmusculus_homolog_perc_id                      "79.0698"           
mmusculus_homolog_perc_id_r1                   "95.7747"           
mmusculus_homolog_goc_score                    NA                  
mmusculus_homolog_wga_coverage                 "100"               
mmusculus_homolog_orthology_confidence         "1"                 

Older release

List releases.

listEnsemblArchives()
             name     date                                 url version
1  Ensembl GRCh37 Feb 2014          https://grch37.ensembl.org  GRCh37
2     Ensembl 115 Sep 2025 https://sep2025.archive.ensembl.org     115
3     Ensembl 114 May 2025 https://may2025.archive.ensembl.org     114
4     Ensembl 113 Oct 2024 https://oct2024.archive.ensembl.org     113
5     Ensembl 112 May 2024 https://may2024.archive.ensembl.org     112
6     Ensembl 111 Jan 2024 https://jan2024.archive.ensembl.org     111
7     Ensembl 110 Jul 2023 https://jul2023.archive.ensembl.org     110
8     Ensembl 109 Feb 2023 https://feb2023.archive.ensembl.org     109
9     Ensembl 108 Oct 2022 https://oct2022.archive.ensembl.org     108
10    Ensembl 107 Jul 2022 https://jul2022.archive.ensembl.org     107
11    Ensembl 106 Apr 2022 https://apr2022.archive.ensembl.org     106
12    Ensembl 105 Dec 2021 https://dec2021.archive.ensembl.org     105
13    Ensembl 104 May 2021 https://may2021.archive.ensembl.org     104
14    Ensembl 103 Feb 2021 https://feb2021.archive.ensembl.org     103
15    Ensembl 102 Nov 2020 https://nov2020.archive.ensembl.org     102
16    Ensembl 101 Aug 2020 https://aug2020.archive.ensembl.org     101
17    Ensembl 100 Apr 2020 https://apr2020.archive.ensembl.org     100
18     Ensembl 80 May 2015 https://may2015.archive.ensembl.org      80
19     Ensembl 77 Oct 2014 https://oct2014.archive.ensembl.org      77
20     Ensembl 75 Feb 2014 https://feb2014.archive.ensembl.org      75
21     Ensembl 54 May 2009 https://may2009.archive.ensembl.org      54
   current_release
1                 
2                *
3                 
4                 
5                 
6                 
7                 
8                 
9                 
10                
11                
12                
13                
14                
15                
16                
17                
18                
19                
20                
21                

Use Ensembl 113.

ensembl <- useMart(
  "ENSEMBL_MART_ENSEMBL",
  dataset=avail_datasets[idx, 'dataset'],
  host = "https://oct2024.archive.ensembl.org"
)

Check again.

my_gene <- 'ENSG00000207721'

getBM(
  attributes = wanted_attr,
  filters = "ensembl_gene_id",
  values = my_gene,
  mart = ensembl
) -> my_res

t(my_res)
                                               [,1]                
ensembl_gene_id                                "ENSG00000207721"   
mmusculus_homolog_ensembl_gene                 "ENSMUSG00000065431"
mmusculus_homolog_associated_gene_name         "Mir186"            
mmusculus_homolog_ensembl_peptide              "ENSMUST00000083497"
mmusculus_homolog_chromosome                   "3"                 
mmusculus_homolog_chrom_start                  "157249916"         
mmusculus_homolog_chrom_end                    "157249986"         
mmusculus_homolog_canonical_transcript_protein "ENST00000384988"   
mmusculus_homolog_subtype                      "Eutheria"          
mmusculus_homolog_orthology_type               "ortholog_one2one"  
mmusculus_homolog_perc_id                      "79.0698"           
mmusculus_homolog_perc_id_r1                   "95.7747"           
mmusculus_homolog_goc_score                    NA                  
mmusculus_homolog_wga_coverage                 "100"               
mmusculus_homolog_orthology_confidence         "1"                 

Get all human genes for Ensembl 113.

all_genes_113 <- getBM(
  attributes = "ensembl_gene_id",
  mart = ensembl
)

length(unique(all_genes_113$ensembl_gene_id))
[1] 86402

Get all homologues.

getBM(
  attributes = wanted_attr,
  filters = "ensembl_gene_id",
  values = all_genes_113$ensembl_gene_id,
  mart = ensembl
) -> human_mouse_homologues

dim(human_mouse_homologues)
[1] 92787    15

Check out the results!

head(human_mouse_homologues)
  ensembl_gene_id mmusculus_homolog_ensembl_gene
1 ENSG00000000003             ENSMUSG00000067377
2 ENSG00000000005             ENSMUSG00000031250
3 ENSG00000000419             ENSMUSG00000078919
4 ENSG00000000457             ENSMUSG00000026584
5 ENSG00000000460             ENSMUSG00000041406
6 ENSG00000000938             ENSMUSG00000028874
  mmusculus_homolog_associated_gene_name mmusculus_homolog_ensembl_peptide
1                                 Tspan6                ENSMUSP00000084838
2                                   Tnmd                ENSMUSP00000033602
3                                   Dpm1                ENSMUSP00000118776
4                                  Scyl3                ENSMUSP00000027876
5                                  Firrm                ENSMUSP00000095101
6                                    Fgr                ENSMUSP00000030693
  mmusculus_homolog_chromosome mmusculus_homolog_chrom_start
1                            X                     132791817
2                            X                     132751729
3                            2                     168050968
4                            1                     163756669
5                            1                     163773562
6                            4                     132701406
  mmusculus_homolog_chrom_end mmusculus_homolog_canonical_transcript_protein
1                   132799178                                ENSP00000362111
2                   132766326                                ENSP00000362122
3                   168072511                                ENSP00000360644
4                   163782695                                ENSP00000356745
5                   163822365                                ENSP00000352276
6                   132729221                                ENSP00000363117
  mmusculus_homolog_subtype mmusculus_homolog_orthology_type
1          Euarchontoglires                 ortholog_one2one
2          Euarchontoglires                 ortholog_one2one
3                  Eutheria                 ortholog_one2one
4          Euarchontoglires                 ortholog_one2one
5          Euarchontoglires                 ortholog_one2one
6          Euarchontoglires                 ortholog_one2one
  mmusculus_homolog_perc_id mmusculus_homolog_perc_id_r1
1                   93.0612                      93.0612
2                   96.2145                      96.2145
3                   91.1538                      91.1538
4                   82.8488                      77.5510
5                   72.0985                      66.3430
6                   83.9319                      85.8801
  mmusculus_homolog_goc_score mmusculus_homolog_wga_coverage
1                         100                         100.00
2                         100                         100.00
3                         100                         100.00
4                         100                         100.00
5                           0                          99.21
6                         100                         100.00
  mmusculus_homolog_orthology_confidence
1                                      1
2                                      1
3                                      1
4                                      1
5                                      1
6                                      1

sessionInfo()
R version 4.5.0 (2025-04-11)
Platform: x86_64-pc-linux-gnu
Running under: Ubuntu 24.04.2 LTS

Matrix products: default
BLAS:   /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3 
LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.26.so;  LAPACK version 3.12.0

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

time zone: Etc/UTC
tzcode source: system (glibc)

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] biomaRt_2.64.0  workflowr_1.7.1

loaded via a namespace (and not attached):
 [1] KEGGREST_1.48.1         xfun_0.52               bslib_0.9.0            
 [4] httr2_1.2.1             processx_3.8.6          Biobase_2.68.0         
 [7] callr_3.7.6             vctrs_0.6.5             tools_4.5.0            
[10] ps_1.9.1                generics_0.1.4          curl_6.4.0             
[13] stats4_4.5.0            tibble_3.2.1            AnnotationDbi_1.70.0   
[16] RSQLite_2.4.2           blob_1.2.4              pkgconfig_2.0.3        
[19] dbplyr_2.5.0            S4Vectors_0.46.0        lifecycle_1.0.4        
[22] GenomeInfoDbData_1.2.14 compiler_4.5.0          stringr_1.5.1          
[25] git2r_0.36.2            Biostrings_2.76.0       progress_1.2.3         
[28] getPass_0.2-4           httpuv_1.6.16           GenomeInfoDb_1.44.1    
[31] htmltools_0.5.8.1       sass_0.4.10             yaml_2.3.10            
[34] later_1.4.2             pillar_1.10.2           crayon_1.5.3           
[37] jquerylib_0.1.4         whisker_0.4.1           cachem_1.1.0           
[40] tidyselect_1.2.1        digest_0.6.37           stringi_1.8.7          
[43] purrr_1.0.4             dplyr_1.1.4             rprojroot_2.0.4        
[46] fastmap_1.2.0           cli_3.6.5               magrittr_2.0.3         
[49] withr_3.0.2             filelock_1.0.3          prettyunits_1.2.0      
[52] UCSC.utils_1.4.0        promises_1.3.2          rappdirs_0.3.3         
[55] bit64_4.6.0-1           rmarkdown_2.29          XVector_0.48.0         
[58] httr_1.4.7              bit_4.6.0               png_0.1-8              
[61] hms_1.1.3               memoise_2.0.1           evaluate_1.0.3         
[64] knitr_1.50              IRanges_2.42.0          BiocFileCache_2.16.1   
[67] rlang_1.1.6             Rcpp_1.0.14             glue_1.8.0             
[70] DBI_1.2.3               xml2_1.3.8              BiocGenerics_0.54.0    
[73] rstudioapi_0.17.1       jsonlite_2.0.0          R6_2.6.1               
[76] fs_1.6.6