Last updated: 2025-07-11
Checks: 7 0
Knit directory: muse/
This reproducible R Markdown analysis was created with workflowr (version 1.7.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20200712)
was run prior to running
the code in the R Markdown file. Setting a seed ensures that any results
that rely on randomness, e.g. subsampling or permutations, are
reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version 6a48046. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for
the analysis have been committed to Git prior to generating the results
(you can use wflow_publish
or
wflow_git_commit
). workflowr only checks the R Markdown
file, but you know if there are other scripts or data files that it
depends on. Below is the status of the Git repository when the results
were generated:
Ignored files:
Ignored: .Rproj.user/
Ignored: data/1M_neurons_filtered_gene_bc_matrices_h5.h5
Ignored: data/293t/
Ignored: data/293t_3t3_filtered_gene_bc_matrices.tar.gz
Ignored: data/293t_filtered_gene_bc_matrices.tar.gz
Ignored: data/5k_Human_Donor1_PBMC_3p_gem-x_5k_Human_Donor1_PBMC_3p_gem-x_count_sample_filtered_feature_bc_matrix.h5
Ignored: data/5k_Human_Donor2_PBMC_3p_gem-x_5k_Human_Donor2_PBMC_3p_gem-x_count_sample_filtered_feature_bc_matrix.h5
Ignored: data/5k_Human_Donor3_PBMC_3p_gem-x_5k_Human_Donor3_PBMC_3p_gem-x_count_sample_filtered_feature_bc_matrix.h5
Ignored: data/5k_Human_Donor4_PBMC_3p_gem-x_5k_Human_Donor4_PBMC_3p_gem-x_count_sample_filtered_feature_bc_matrix.h5
Ignored: data/97516b79-8d08-46a6-b329-5d0a25b0be98.h5ad
Ignored: data/Parent_SC3v3_Human_Glioblastoma_filtered_feature_bc_matrix.tar.gz
Ignored: data/brain_counts/
Ignored: data/cl.obo
Ignored: data/cl.owl
Ignored: data/jurkat/
Ignored: data/jurkat:293t_50:50_filtered_gene_bc_matrices.tar.gz
Ignored: data/jurkat_293t/
Ignored: data/jurkat_filtered_gene_bc_matrices.tar.gz
Ignored: data/pbmc20k/
Ignored: data/pbmc20k_seurat/
Ignored: data/pbmc3k.h5ad
Ignored: data/pbmc3k/
Ignored: data/pbmc3k_bpcells_mat/
Ignored: data/pbmc3k_export.mtx
Ignored: data/pbmc3k_matrix.mtx
Ignored: data/pbmc3k_seurat.rds
Ignored: data/pbmc4k_filtered_gene_bc_matrices.tar.gz
Ignored: data/pbmc_1k_v3_filtered_feature_bc_matrix.h5
Ignored: data/pbmc_1k_v3_raw_feature_bc_matrix.h5
Ignored: data/refdata-gex-GRCh38-2020-A.tar.gz
Ignored: data/seurat_1m_neuron.rds
Ignored: data/t_3k_filtered_gene_bc_matrices.tar.gz
Ignored: r_packages_4.4.1/
Ignored: r_packages_4.5.0/
Untracked files:
Untracked: analysis/bioc_scrnaseq.Rmd
Untracked: bpcells_matrix/
Untracked: data/Caenorhabditis_elegans.WBcel235.113.gtf.gz
Untracked: data/GCF_043380555.1-RS_2024_12_gene_ontology.gaf.gz
Untracked: data/arab.rds
Untracked: data/astronomicalunit.csv
Untracked: data/femaleMiceWeights.csv
Untracked: m3/
Untracked: pbmc3k_before_filtering.rds
Untracked: pbmc3k_save_rds.rds
Untracked: rnorvegicus_gene_ensembl__ontology_go__dm.txt.gz
Untracked: rnorvegicus_gene_ensembl__ox_go__dm.txt.gz
Untracked: rsem.merged.gene_counts.tsv
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were
made to the R Markdown
(analysis/biomart_rattus_norvegicus.Rmd
) and HTML
(docs/biomart_rattus_norvegicus.html
) files. If you’ve
configured a remote Git repository (see ?wflow_git_remote
),
click on the hyperlinks in the table below to view the files as they
were in that past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | 6a48046 | Dave Tang | 2025-07-11 | Using biomaRt with rat |
The biomaRt package provides an interface to BioMart databases provided by Ensembl.
biomaRt provides an interface to a growing collection of databases implementing the BioMart software suite. The package enables retrieval of large amounts of data in a uniform way without the need to know the underlying database schemas or write complex SQL queries. The most prominent examples of BioMart databases are maintain by Ensembl, which provides biomaRt users direct access to a diverse set of data and enables a wide range of powerful online queries from gene annotation to database mining.
For more information, check out the Accessing Ensembl annotation with biomaRt guide.
To begin, install the {biomaRt} package.
if (!require("BiocManager", quietly = TRUE))
install.packages("BiocManager")
BiocManager::install("biomaRt")
Load package.
packageVersion("biomaRt")
[1] '2.64.0'
suppressPackageStartupMessages(library(biomaRt))
Connect to the selected BioMart database and rat dataset.
ensembl <- useMart("ensembl", dataset='rnorvegicus_gene_ensembl')
ensembl
Object of class 'Mart':
Using the ENSEMBL_MART_ENSEMBL BioMart database
Using the rnorvegicus_gene_ensembl dataset
ENSRNOG00000031780 should be associated to:
my_gene <- 'ENSRNOG00000031780'
getBM(
attributes=c('ensembl_gene_id', 'go_id'),
filters="ensembl_gene_id",
values = my_gene,
mart = ensembl
)
ensembl_gene_id go_id
1 ENSRNOG00000031780 GO:0006412
2 ENSRNOG00000031780 GO:0030533
ENSRNOG00000030644.
my_gene <- 'ENSRNOG00000030644'
expected_go <- c('GO:0001666', 'GO:0003954', 'GO:0005739', 'GO:0005743', 'GO:0006120', 'GO:0008137', 'GO:0009060', 'GO:0009410', 'GO:0016020', 'GO:0030425', 'GO:0031966', 'GO:0032981', 'GO:0033194', 'GO:0043025', 'GO:0045271', 'GO:1902600')
getBM(
attributes=c('ensembl_gene_id', 'go_id'),
filters="ensembl_gene_id",
values = my_gene,
mart = ensembl
) -> observed_go
expected_go %in% observed_go$go_id
[1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[16] TRUE
observed_go$go_id %in% expected_go
[1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[16] TRUE
sessionInfo()
R version 4.5.0 (2025-04-11)
Platform: x86_64-pc-linux-gnu
Running under: Ubuntu 24.04.2 LTS
Matrix products: default
BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3
LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.26.so; LAPACK version 3.12.0
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
time zone: Etc/UTC
tzcode source: system (glibc)
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] biomaRt_2.64.0 workflowr_1.7.1
loaded via a namespace (and not attached):
[1] KEGGREST_1.48.1 xfun_0.52 bslib_0.9.0
[4] httr2_1.1.2 processx_3.8.6 Biobase_2.68.0
[7] callr_3.7.6 vctrs_0.6.5 tools_4.5.0
[10] ps_1.9.1 generics_0.1.4 curl_6.4.0
[13] stats4_4.5.0 tibble_3.3.0 AnnotationDbi_1.70.0
[16] RSQLite_2.4.1 blob_1.2.4 pkgconfig_2.0.3
[19] dbplyr_2.5.0 S4Vectors_0.46.0 lifecycle_1.0.4
[22] GenomeInfoDbData_1.2.14 compiler_4.5.0 stringr_1.5.1
[25] git2r_0.36.2 Biostrings_2.76.0 progress_1.2.3
[28] getPass_0.2-4 httpuv_1.6.16 GenomeInfoDb_1.44.0
[31] htmltools_0.5.8.1 sass_0.4.10 yaml_2.3.10
[34] later_1.4.2 pillar_1.11.0 crayon_1.5.3
[37] jquerylib_0.1.4 whisker_0.4.1 cachem_1.1.0
[40] tidyselect_1.2.1 digest_0.6.37 stringi_1.8.7
[43] purrr_1.0.4 dplyr_1.1.4 rprojroot_2.0.4
[46] fastmap_1.2.0 cli_3.6.5 magrittr_2.0.3
[49] withr_3.0.2 filelock_1.0.3 prettyunits_1.2.0
[52] UCSC.utils_1.4.0 promises_1.3.3 rappdirs_0.3.3
[55] bit64_4.6.0-1 rmarkdown_2.29 XVector_0.48.0
[58] httr_1.4.7 bit_4.6.0 png_0.1-8
[61] hms_1.1.3 memoise_2.0.1 evaluate_1.0.4
[64] knitr_1.50 IRanges_2.42.0 BiocFileCache_2.16.0
[67] rlang_1.1.6 Rcpp_1.1.0 glue_1.8.0
[70] DBI_1.2.3 xml2_1.3.8 BiocGenerics_0.54.0
[73] rstudioapi_0.17.1 jsonlite_2.0.0 R6_2.6.1
[76] fs_1.6.6