Last updated: 2025-04-18

Checks: 7 0

Knit directory: muse/

This reproducible R Markdown analysis was created with workflowr (version 1.7.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20200712) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version b082b56. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rproj.user/
    Ignored:    data/1M_neurons_filtered_gene_bc_matrices_h5.h5
    Ignored:    data/293t/
    Ignored:    data/293t_3t3_filtered_gene_bc_matrices.tar.gz
    Ignored:    data/293t_filtered_gene_bc_matrices.tar.gz
    Ignored:    data/5k_Human_Donor1_PBMC_3p_gem-x_5k_Human_Donor1_PBMC_3p_gem-x_count_sample_filtered_feature_bc_matrix.h5
    Ignored:    data/5k_Human_Donor2_PBMC_3p_gem-x_5k_Human_Donor2_PBMC_3p_gem-x_count_sample_filtered_feature_bc_matrix.h5
    Ignored:    data/5k_Human_Donor3_PBMC_3p_gem-x_5k_Human_Donor3_PBMC_3p_gem-x_count_sample_filtered_feature_bc_matrix.h5
    Ignored:    data/5k_Human_Donor4_PBMC_3p_gem-x_5k_Human_Donor4_PBMC_3p_gem-x_count_sample_filtered_feature_bc_matrix.h5
    Ignored:    data/97516b79-8d08-46a6-b329-5d0a25b0be98.h5ad
    Ignored:    data/Parent_SC3v3_Human_Glioblastoma_filtered_feature_bc_matrix.tar.gz
    Ignored:    data/brain_counts/
    Ignored:    data/cl.obo
    Ignored:    data/cl.owl
    Ignored:    data/jurkat/
    Ignored:    data/jurkat:293t_50:50_filtered_gene_bc_matrices.tar.gz
    Ignored:    data/jurkat_293t/
    Ignored:    data/jurkat_filtered_gene_bc_matrices.tar.gz
    Ignored:    data/pbmc20k/
    Ignored:    data/pbmc20k_seurat/
    Ignored:    data/pbmc3k/
    Ignored:    data/pbmc3k_bpcells_mat/
    Ignored:    data/pbmc3k_seurat.rds
    Ignored:    data/pbmc4k_filtered_gene_bc_matrices.tar.gz
    Ignored:    data/pbmc_1k_v3_filtered_feature_bc_matrix.h5
    Ignored:    data/pbmc_1k_v3_raw_feature_bc_matrix.h5
    Ignored:    data/refdata-gex-GRCh38-2020-A.tar.gz
    Ignored:    data/seurat_1m_neuron.rds
    Ignored:    data/t_3k_filtered_gene_bc_matrices.tar.gz
    Ignored:    r_packages_4.4.1/

Untracked files:
    Untracked:  analysis/bioc_scrnaseq.Rmd
    Untracked:  bpcells_matrix/
    Untracked:  m3/
    Untracked:  pbmc3k_before_filtering.rds
    Untracked:  pbmc3k_save_rds.rds
    Untracked:  rsem.merged.gene_counts.tsv

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/bpcells.Rmd) and HTML (docs/bpcells.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd b082b56 Dave Tang 2025-04-18 Exporting and loading
html 48410a3 Dave Tang 2025-04-17 Build site.
Rmd 0a5c69f Dave Tang 2025-04-17 Relative paths
html 277808a Dave Tang 2025-04-17 Build site.
Rmd 2141310 Dave Tang 2025-04-17 Modifying matrix path
html aded5ff Dave Tang 2025-04-16 Build site.
Rmd 2a577d9 Dave Tang 2025-04-16 Checking out the BPCells package

BPCells is an R package that allows for computationally efficient single-cell analysis. It utilizes bit-packing compression to store counts matrices on disk and C++ code to cache operations.

remotes::install_github("bnprks/BPCells/r")

Getting started

Load packages.

suppressPackageStartupMessages(library(BPCells))
suppressPackageStartupMessages(library(Matrix))

Write matrix to disk using BPCells.

set.seed(1984)
bpcells_dir <- 'bpcells_matrix'
if(dir.exists(bpcells_dir)){
  unlink(bpcells_dir, recursive = TRUE)
}
write_matrix_dir(
  mat = rsparsematrix(50000, 50000, density = 0.01),
  dir = bpcells_dir
)
Warning: Matrix compression performs poorly with non-integers.
• Consider calling convert_matrix_type if a compressed integer matrix is intended.
This message is displayed once every 8 hours.
50000 x 50000 IterableMatrix object with class MatrixDir

Row names: unknown names
Col names: unknown names

Data type: double
Storage order: column major

Queued Operations:
1. Load compressed matrix from directory /home/rstudio/muse/bpcells_matrix

Open the BPCells matrix from disk.

bp_mat <- open_matrix_dir(bpcells_dir)
bp_mat
50000 x 50000 IterableMatrix object with class MatrixDir

Row names: unknown names
Col names: unknown names

Data type: double
Storage order: column major

Queued Operations:
1. Load compressed matrix from directory /home/rstudio/muse/bpcells_matrix

Calculate row and column sums (lazily, disk-backed).

row_sums <- rowSums(bp_mat)
col_sums <- colSums(bp_mat)

head(row_sums)
[1]  -3.04895 -15.53270  33.77594 -16.79850  -1.07540  12.19100
dense_row <- as.matrix(bp_mat[1, ])
Warning: Converting to a dense matrix may use excessive memory
This message is displayed once every 8 hours.
sum(dense_row)
[1] -3.04895

Modifying matrix path

Following the example by Ben Parks:

my_dir <- file.path(tempdir(), "data")
m1 <- matrix(1:12, nrow=3) |> 
  as("IterableMatrix") |>
  write_matrix_dir(file.path(my_dir, "m1"), overwrite = TRUE) |>
  log1p()
m1
3 x 4 IterableMatrix object with class TransformLog1p

Row names: unknown names
Col names: unknown names

Data type: double
Storage order: column major

Queued Operations:
1. Load compressed matrix from directory /tmp/RtmpGBuknV/data/m1
2. Transform log1p

all_matrix_inputs() strips away any queued operations, i.e., Transform lop1p is gone. We can use inputs to modify the path. Note that the queued operations in m1 are intact.

inputs <- all_matrix_inputs(m1)
str(inputs)
List of 1
 $ :Formal class 'MatrixDir' [package "BPCells"] with 7 slots
  .. ..@ dir        : chr "/tmp/RtmpGBuknV/data/m1"
  .. ..@ compressed : logi TRUE
  .. ..@ buffer_size: int 8192
  .. ..@ type       : chr "double"
  .. ..@ dim        : int [1:2] 3 4
  .. ..@ transpose  : logi FALSE
  .. ..@ dimnames   :List of 2
  .. .. ..$ : NULL
  .. .. ..$ : NULL
m1
3 x 4 IterableMatrix object with class TransformLog1p

Row names: unknown names
Col names: unknown names

Data type: double
Storage order: column major

Queued Operations:
1. Load compressed matrix from directory /tmp/RtmpGBuknV/data/m1
2. Transform log1p

Create another matrix.

m2 <- matrix(1:21, nrow=3) |> 
  as("IterableMatrix") |>
  write_matrix_dir(file.path(my_dir, "m2"), overwrite = TRUE)
m2
3 x 7 IterableMatrix object with class MatrixDir

Row names: unknown names
Col names: unknown names

Data type: double
Storage order: column major

Queued Operations:
1. Load compressed matrix from directory /tmp/RtmpGBuknV/data/m2

Modify path.

inputs[[1]]@dir <- file.path(my_dir, "m2")

all_matrix_inputs(m1) <- inputs
m1
3 x 4 IterableMatrix object with class TransformLog1p

Row names: unknown names
Col names: unknown names

Data type: double
Storage order: column major

Queued Operations:
1. Load compressed matrix from directory /tmp/RtmpGBuknV/data/m2
2. Transform log1p

Check that it is using m2, which has 7 columns.

Matrix::colMeans(m1)
[1] 1.059351 1.782369 2.193084 2.482584 2.706565 2.889341 3.043766

Relative paths

It seems that write_matrix_dir() uses full paths by default.

m3 <- matrix(1:12, nrow=3) |> 
  as("IterableMatrix") |>
  write_matrix_dir("m3", overwrite = TRUE) |>
  log1p()
m3
3 x 4 IterableMatrix object with class TransformLog1p

Row names: unknown names
Col names: unknown names

Data type: double
Storage order: column major

Queued Operations:
1. Load compressed matrix from directory /home/rstudio/muse/m3
2. Transform log1p

Will it work if I modify it to a relative path?

m3_inputs <- all_matrix_inputs(m3)
m3_inputs[[1]]@dir <- file.path("m3")
all_matrix_inputs(m3) <- m3_inputs
m3
3 x 4 IterableMatrix object with class TransformLog1p

Row names: unknown names
Col names: unknown names

Data type: double
Storage order: column major

Queued Operations:
1. Load compressed matrix from directory m3
2. Transform log1p

Calculate column means.

Matrix::colMeans(m3)
[1] 1.059351 1.782369 2.193084 2.482584

Exporting and loading

Use saveRDS().

saveRDS(object = m3, file = paste0(my_dir, 'm3.rds'))

Load.

m3_loaded <- readRDS(paste0(my_dir, 'm3.rds'))
m3_loaded
3 x 4 IterableMatrix object with class TransformLog1p

Row names: unknown names
Col names: unknown names

Data type: double
Storage order: column major

Queued Operations:
1. Load compressed matrix from directory m3
2. Transform log1p

For m3 we used a relative path, so it will work if the matrix directory exists in the current directory (which it should).

Matrix::colMeans(m3)
[1] 1.059351 1.782369 2.193084 2.482584

sessionInfo()
R version 4.4.1 (2024-06-14)
Platform: x86_64-pc-linux-gnu
Running under: Ubuntu 22.04.5 LTS

Matrix products: default
BLAS:   /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3 
LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.20.so;  LAPACK version 3.10.0

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

time zone: Etc/UTC
tzcode source: system (glibc)

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] Matrix_1.7-0    BPCells_0.3.0   workflowr_1.7.1

loaded via a namespace (and not attached):
 [1] jsonlite_1.8.9          compiler_4.4.1          promises_1.3.2         
 [4] Rcpp_1.0.13             stringr_1.5.1           git2r_0.35.0           
 [7] GenomicRanges_1.58.0    callr_3.7.6             later_1.3.2            
[10] jquerylib_0.1.4         IRanges_2.40.1          yaml_2.3.10            
[13] fastmap_1.2.0           lattice_0.22-6          XVector_0.46.0         
[16] R6_2.5.1                GenomeInfoDb_1.42.3     knitr_1.48             
[19] BiocGenerics_0.52.0     tibble_3.2.1            MatrixGenerics_1.18.1  
[22] rprojroot_2.0.4         GenomeInfoDbData_1.2.13 bslib_0.8.0            
[25] pillar_1.10.1           rlang_1.1.4             cachem_1.1.0           
[28] stringi_1.8.4           httpuv_1.6.15           xfun_0.48              
[31] getPass_0.2-4           fs_1.6.4                sass_0.4.9             
[34] cli_3.6.3               magrittr_2.0.3          zlibbioc_1.52.0        
[37] ps_1.8.1                digest_0.6.37           grid_4.4.1             
[40] processx_3.8.4          rstudioapi_0.17.1       lifecycle_1.0.4        
[43] S4Vectors_0.44.0        vctrs_0.6.5             evaluate_1.0.1         
[46] glue_1.8.0              whisker_0.4.1           stats4_4.4.1           
[49] rmarkdown_2.28          httr_1.4.7              matrixStats_1.5.0      
[52] UCSC.utils_1.2.0        tools_4.4.1             pkgconfig_2.0.3        
[55] htmltools_0.5.8.1