Last updated: 2025-06-27
Checks: 7 0
Knit directory: muse/
This reproducible R Markdown analysis was created with workflowr (version 1.7.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20200712)
was run prior to running
the code in the R Markdown file. Setting a seed ensures that any results
that rely on randomness, e.g. subsampling or permutations, are
reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version dfb1ef2. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for
the analysis have been committed to Git prior to generating the results
(you can use wflow_publish
or
wflow_git_commit
). workflowr only checks the R Markdown
file, but you know if there are other scripts or data files that it
depends on. Below is the status of the Git repository when the results
were generated:
Ignored files:
Ignored: .Rproj.user/
Ignored: data/1M_neurons_filtered_gene_bc_matrices_h5.h5
Ignored: data/293t/
Ignored: data/293t_3t3_filtered_gene_bc_matrices.tar.gz
Ignored: data/293t_filtered_gene_bc_matrices.tar.gz
Ignored: data/5k_Human_Donor1_PBMC_3p_gem-x_5k_Human_Donor1_PBMC_3p_gem-x_count_sample_filtered_feature_bc_matrix.h5
Ignored: data/5k_Human_Donor2_PBMC_3p_gem-x_5k_Human_Donor2_PBMC_3p_gem-x_count_sample_filtered_feature_bc_matrix.h5
Ignored: data/5k_Human_Donor3_PBMC_3p_gem-x_5k_Human_Donor3_PBMC_3p_gem-x_count_sample_filtered_feature_bc_matrix.h5
Ignored: data/5k_Human_Donor4_PBMC_3p_gem-x_5k_Human_Donor4_PBMC_3p_gem-x_count_sample_filtered_feature_bc_matrix.h5
Ignored: data/97516b79-8d08-46a6-b329-5d0a25b0be98.h5ad
Ignored: data/Parent_SC3v3_Human_Glioblastoma_filtered_feature_bc_matrix.tar.gz
Ignored: data/brain_counts/
Ignored: data/cl.obo
Ignored: data/cl.owl
Ignored: data/jurkat/
Ignored: data/jurkat:293t_50:50_filtered_gene_bc_matrices.tar.gz
Ignored: data/jurkat_293t/
Ignored: data/jurkat_filtered_gene_bc_matrices.tar.gz
Ignored: data/pbmc20k/
Ignored: data/pbmc20k_seurat/
Ignored: data/pbmc3k.h5ad
Ignored: data/pbmc3k/
Ignored: data/pbmc3k_bpcells_mat/
Ignored: data/pbmc3k_export.mtx
Ignored: data/pbmc3k_matrix.mtx
Ignored: data/pbmc3k_seurat.rds
Ignored: data/pbmc4k_filtered_gene_bc_matrices.tar.gz
Ignored: data/pbmc_1k_v3_filtered_feature_bc_matrix.h5
Ignored: data/pbmc_1k_v3_raw_feature_bc_matrix.h5
Ignored: data/refdata-gex-GRCh38-2020-A.tar.gz
Ignored: data/seurat_1m_neuron.rds
Ignored: data/t_3k_filtered_gene_bc_matrices.tar.gz
Ignored: r_packages_4.4.1/
Ignored: r_packages_4.5.0/
Untracked files:
Untracked: Caenorhabditis_elegans.WBcel235.113.gtf.gz
Untracked: Nothobranchius_furzeri.Nfu_20140520.113.gtf.gz
Untracked: analysis/bioc_scrnaseq.Rmd
Untracked: bpcells_matrix/
Untracked: data/Caenorhabditis_elegans.WBcel235.113.gtf.gz
Untracked: data/GCF_043380555.1-RS_2024_12_gene_ontology.gaf.gz
Untracked: data/celegans_gene_id_to_go_id.csv.gz
Untracked: data/celegans_gene_info.csv.gz
Untracked: m3/
Untracked: pbmc3k_before_filtering.rds
Untracked: pbmc3k_save_rds.rds
Untracked: rsem.merged.gene_counts.tsv
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were
made to the R Markdown (analysis/celegans.Rmd
) and HTML
(docs/celegans.html
) files. If you’ve configured a remote
Git repository (see ?wflow_git_remote
), click on the
hyperlinks in the table below to view the files as they were in that
past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | dfb1ef2 | Dave Tang | 2025-06-27 | Caenorhabditis elegans |
The biomaRt package provides an interface to BioMart databases provided by Ensembl.
biomaRt provides an interface to a growing collection of databases implementing the BioMart software suite. The package enables retrieval of large amounts of data in a uniform way without the need to know the underlying database schemas or write complex SQL queries. The most prominent examples of BioMart databases are maintain by Ensembl, which provides biomaRt users direct access to a diverse set of data and enables a wide range of powerful online queries from gene annotation to database mining.
For more information, check out the Accessing Ensembl annotation with biomaRt guide.
To begin, install the {biomaRt} package.
if (!require("BiocManager", quietly = TRUE))
install.packages("BiocManager")
BiocManager::install("biomaRt")
Load package.
packageVersion("biomaRt")
[1] '2.64.0'
suppressPackageStartupMessages(library(biomaRt))
Use mirror.
ensembl <- useEnsembl(biomart = "ensembl", mirror = "asia")
ensembl
Object of class 'Mart':
Using the ENSEMBL_MART_ENSEMBL BioMart database
No dataset selected.
Connect to the selected BioMart database by using
useMart()
.
avail_datasets <- listDatasets(ensembl)
head(avail_datasets)
dataset description
1 abrachyrhynchus_gene_ensembl Pink-footed goose genes (ASM259213v1)
2 acalliptera_gene_ensembl Eastern happy genes (fAstCal1.3)
3 acarolinensis_gene_ensembl Green anole genes (AnoCar2.0v2)
4 acchrysaetos_gene_ensembl Golden eagle genes (bAquChr1.2)
5 acitrinellus_gene_ensembl Midas cichlid genes (Midas_v5)
6 amelanoleuca_gene_ensembl Giant panda genes (ASM200744v2)
version
1 ASM259213v1
2 fAstCal1.3
3 AnoCar2.0v2
4 bAquChr1.2
5 Midas_v5
6 ASM200744v2
Look for C. elegans datasets by searching the description column.
idx <- grep(pattern = "elegans", avail_datasets$dataset, ignore.case = TRUE)
avail_datasets[idx, ]
dataset description
27 celegans_gene_ensembl Caenorhabditis elegans (Nematode, N2) genes (WBcel235)
version
27 WBcel235
Connect to the selected BioMart database and Caenorhabditis elegans dataset.
ensembl <- useEnsembl(biomart = "ensembl", mirror = "asia", dataset=avail_datasets[idx, 'dataset'])
ensembl
Object of class 'Mart':
Using the ENSEMBL_MART_ENSEMBL BioMart database
Using the celegans_gene_ensembl dataset
Building a query, requires three things:
Use listFilters()
to show available filters.
avail_filters <- listFilters(ensembl)
head(avail_filters)
name
1 chromosome_name
2 start
3 end
4 strand
5 chromosomal_region
6 with_biogrid
description
1 Chromosome/scaffold name
2 Start
3 End
4 Strand
5 e.g. 1:100:10000:-1, 1:100000:200000:1
6 With BioGRID Interaction data, The General Repository for Interaction Datasets ID(s)
Use listAttributes()
to show available attributes.
avail_attributes <- listAttributes(ensembl)
avail_attributes |>
head()
name description page
1 ensembl_gene_id Gene stable ID feature_page
2 ensembl_transcript_id Transcript stable ID feature_page
3 ensembl_peptide_id Protein stable ID feature_page
4 ensembl_exon_id Exon stable ID feature_page
5 description Gene description feature_page
6 chromosome_name Chromosome/scaffold name feature_page
The getBM()
function is the main query function in
{biomaRt}; use it once you have identified your attributes of interest
and filters to use. Note that the gene IDs aren’t really Ensembl Gene
IDs.
gene_ids <- c("WBGene00000007", "WBGene00000027", "WBGene00000056", "WBGene00000071")
getBM(
attributes=c('ensembl_gene_id', 'external_gene_name', 'description'),
filters = 'ensembl_gene_id',
values = gene_ids,
mart = ensembl
) -> res
res
ensembl_gene_id external_gene_name
1 WBGene00000007 aat-6
2 WBGene00000027 abu-4
3 WBGene00000056 acr-17
4 WBGene00000071 acy-4
description
1 Amino acid transporter protein 6 [Source:NCBI gene (formerly Entrezgene);Acc:188421]
2 Activated in Blocked Unfolded protein response [Source:NCBI gene (formerly Entrezgene);Acc:353458]
3 AcetylCholine Receptor;Neur_chan_memb domain-containing protein [Source:NCBI gene (formerly Entrezgene);Acc:191603]
4 adenylate cyclase [Source:NCBI gene (formerly Entrezgene);Acc:178949]
All gene IDs.
gtf_file <- "https://ftp.ensembl.org/pub/release-113/gtf/caenorhabditis_elegans/Caenorhabditis_elegans.WBcel235.113.gtf.gz"
if(file.exists(basename(gtf_file)) == FALSE){
download.file(url = gtf_file, destfile = basename(gtf_file))
}
gtf_cols <- c(
"seqname",
"source",
"feature",
"start",
"end",
"score",
"strand",
"frame",
"attribute"
)
gtf <- readr::read_tsv(file = gtf_file, comment = "#", col_names = gtf_cols, show_col_types = FALSE)
gtf |>
dplyr::filter(feature == "gene") |>
dplyr::select(attribute) |>
tidyr::separate_rows(attribute, sep = ";\\s*") |>
dplyr::filter(grepl("gene_id", attribute)) |>
tidyr::separate(attribute, c('key', 'value'), sep = "\\s") |>
dplyr::pull(value) |>
gsub(pattern ='"', replacement = "") -> all_gene_ids
length(all_gene_ids) == length(unique(all_gene_ids))
[1] TRUE
Get gene names and descriptions.
getBM(
attributes=c('ensembl_gene_id', 'external_gene_name', 'description'),
filters = 'ensembl_gene_id',
values = all_gene_ids,
mart = ensembl
) -> all_gene_info
head(all_gene_info)
ensembl_gene_id external_gene_name
1 WBGene00000003 aat-2
2 WBGene00000007 aat-6
3 WBGene00000014 abf-3
4 WBGene00000015 abf-4
5 WBGene00000022 abt-4
6 WBGene00000024 abu-1
description
1 Amino Acid Transporter [Source:NCBI gene (formerly Entrezgene);Acc:184126]
2 Amino acid transporter protein 6 [Source:NCBI gene (formerly Entrezgene);Acc:188421]
3 AntiBacterial Factor related [Source:NCBI gene (formerly Entrezgene);Acc:186202]
4 AntiBacterial Factor related [Source:NCBI gene (formerly Entrezgene);Acc:189702]
5 ABC transporter domain-containing protein [Source:NCBI gene (formerly Entrezgene);Acc:178559]
6 Activated in Blocked Unfolded protein response [Source:NCBI gene (formerly Entrezgene);Acc:181800]
Save lookup table.
readr::write_csv(x = all_gene_info, file = "data/celegans_gene_info.csv.gz")
Find GO attribute names.
grep("^go", avail_attributes$name, ignore.case=TRUE, value=TRUE)
[1] "go_id" "go_linkage_type" "goslim_goa_accession"
[4] "goslim_goa_description"
Query.
getBM(
attributes=c("ensembl_gene_id", "go_id"),
filters="ensembl_gene_id",
values = all_gene_ids,
mart = ensembl
) -> all_gene_go_ids
head(all_gene_go_ids)
ensembl_gene_id go_id
1 WBGene00000003 GO:0016020
2 WBGene00000003 GO:0055085
3 WBGene00000003 GO:0022857
4 WBGene00000003 GO:0003333
5 WBGene00000003 GO:1902475
6 WBGene00000003 GO:0015179
Save GO table.
readr::write_csv(x = all_gene_go_ids, file = "data/celegans_gene_id_to_go_id.csv.gz")
sessionInfo()
R version 4.5.0 (2025-04-11)
Platform: x86_64-pc-linux-gnu
Running under: Ubuntu 24.04.2 LTS
Matrix products: default
BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3
LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.26.so; LAPACK version 3.12.0
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
time zone: Etc/UTC
tzcode source: system (glibc)
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] biomaRt_2.64.0 workflowr_1.7.1
loaded via a namespace (and not attached):
[1] KEGGREST_1.48.1 xfun_0.52 bslib_0.9.0
[4] httr2_1.1.2 processx_3.8.6 Biobase_2.68.0
[7] tzdb_0.5.0 callr_3.7.6 vctrs_0.6.5
[10] tools_4.5.0 ps_1.9.1 generics_0.1.4
[13] parallel_4.5.0 curl_6.4.0 stats4_4.5.0
[16] tibble_3.3.0 AnnotationDbi_1.70.0 RSQLite_2.4.1
[19] blob_1.2.4 pkgconfig_2.0.3 dbplyr_2.5.0
[22] S4Vectors_0.46.0 lifecycle_1.0.4 GenomeInfoDbData_1.2.14
[25] compiler_4.5.0 stringr_1.5.1 git2r_0.36.2
[28] Biostrings_2.76.0 progress_1.2.3 getPass_0.2-4
[31] httpuv_1.6.16 GenomeInfoDb_1.44.0 htmltools_0.5.8.1
[34] sass_0.4.10 yaml_2.3.10 tidyr_1.3.1
[37] later_1.4.2 pillar_1.10.2 crayon_1.5.3
[40] jquerylib_0.1.4 whisker_0.4.1 cachem_1.1.0
[43] tidyselect_1.2.1 digest_0.6.37 stringi_1.8.7
[46] purrr_1.0.4 dplyr_1.1.4 rprojroot_2.0.4
[49] fastmap_1.2.0 cli_3.6.5 magrittr_2.0.3
[52] readr_2.1.5 withr_3.0.2 filelock_1.0.3
[55] prettyunits_1.2.0 UCSC.utils_1.4.0 promises_1.3.3
[58] rappdirs_0.3.3 bit64_4.6.0-1 rmarkdown_2.29
[61] XVector_0.48.0 httr_1.4.7 bit_4.6.0
[64] png_0.1-8 hms_1.1.3 memoise_2.0.1
[67] evaluate_1.0.4 knitr_1.50 IRanges_2.42.0
[70] BiocFileCache_2.16.0 rlang_1.1.6 Rcpp_1.0.14
[73] glue_1.8.0 DBI_1.2.3 xml2_1.3.8
[76] BiocGenerics_0.54.0 vroom_1.6.5 rstudioapi_0.17.1
[79] jsonlite_2.0.0 R6_2.6.1 fs_1.6.6