Last updated: 2025-02-22
Checks: 7 0
Knit directory: muse/
This reproducible R Markdown analysis was created with workflowr (version 1.7.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20200712)
was run prior to running
the code in the R Markdown file. Setting a seed ensures that any results
that rely on randomness, e.g. subsampling or permutations, are
reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version 5b60bcc. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for
the analysis have been committed to Git prior to generating the results
(you can use wflow_publish
or
wflow_git_commit
). workflowr only checks the R Markdown
file, but you know if there are other scripts or data files that it
depends on. Below is the status of the Git repository when the results
were generated:
Ignored files:
Ignored: .Rproj.user/
Ignored: data/1M_neurons_filtered_gene_bc_matrices_h5.h5
Ignored: data/293t/
Ignored: data/293t_3t3_filtered_gene_bc_matrices.tar.gz
Ignored: data/293t_filtered_gene_bc_matrices.tar.gz
Ignored: data/5k_Human_Donor1_PBMC_3p_gem-x_5k_Human_Donor1_PBMC_3p_gem-x_count_sample_filtered_feature_bc_matrix.h5
Ignored: data/5k_Human_Donor2_PBMC_3p_gem-x_5k_Human_Donor2_PBMC_3p_gem-x_count_sample_filtered_feature_bc_matrix.h5
Ignored: data/5k_Human_Donor3_PBMC_3p_gem-x_5k_Human_Donor3_PBMC_3p_gem-x_count_sample_filtered_feature_bc_matrix.h5
Ignored: data/5k_Human_Donor4_PBMC_3p_gem-x_5k_Human_Donor4_PBMC_3p_gem-x_count_sample_filtered_feature_bc_matrix.h5
Ignored: data/Parent_SC3v3_Human_Glioblastoma_filtered_feature_bc_matrix.tar.gz
Ignored: data/brain_counts/
Ignored: data/cl.obo
Ignored: data/cl.owl
Ignored: data/jurkat/
Ignored: data/jurkat:293t_50:50_filtered_gene_bc_matrices.tar.gz
Ignored: data/jurkat_293t/
Ignored: data/jurkat_filtered_gene_bc_matrices.tar.gz
Ignored: data/pbmc20k/
Ignored: data/pbmc3k/
Ignored: data/pbmc4k_filtered_gene_bc_matrices.tar.gz
Ignored: data/refdata-gex-GRCh38-2020-A.tar.gz
Ignored: data/seurat_1m_neuron.rds
Ignored: data/t_3k_filtered_gene_bc_matrices.tar.gz
Ignored: r_packages_4.4.1/
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were
made to the R Markdown (analysis/celldex.Rmd
) and HTML
(docs/celldex.html
) files. If you’ve configured a remote
Git repository (see ?wflow_git_remote
), click on the
hyperlinks in the table below to view the files as they were in that
past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | 5b60bcc | Dave Tang | 2025-02-22 | Monaco reference |
html | 5917ece | Dave Tang | 2025-02-13 | Build site. |
Rmd | 329c881 | Dave Tang | 2025-02-13 | Pokedex for cell types |
The celldex package provides convenient access to several cell type reference datasets. Most of these references are derived from bulk RNA-seq or microarray data of cell populations that (hopefully) consist of a pure cell type after sorting and/or culturing. The aim is to provide a common resource for further analysis like cell type annotation of single cell expression data or deconvolution of cell type proportions in bulk expression datasets.
Install celldex.
if (!require("BiocManager", quietly = TRUE))
install.packages("BiocManager")
BiocManager::install("celldex")
We can examine the available references using the
surveyReferences()
function. This returns a DataFrame of
the reference’s name and version, along with additional information like
the title, description, species, number of samples, available labels,
and so on.
suppressPackageStartupMessages(library(celldex))
surveyReferences()
DataFrame with 7 rows and 10 columns
name version path title
<character> <character> <character> <character>
1 dice 2024-02-26 NA Human bulk RNA-seq d..
2 blueprint_encode 2024-02-26 NA Human bulk RNA-seq d..
3 immgen 2024-02-26 NA Mouse microarray exp..
4 mouse_rnaseq 2024-02-26 NA Bulk RNA-seq data of..
5 hpca 2024-02-26 NA Microarray data from..
6 novershtern_hematopo.. 2024-02-26 NA Bulk microarray expr..
7 monaco_immune 2024-02-26 NA Human bulk RNA-seq d..
description taxonomy_id genome samples
<character> <List> <List> <integer>
1 Human bulk RNA-seq d.. 9606 1561
2 Human bulk RNA-seq d.. 9606 259
3 Mouse microarray exp.. 10090 830
4 Bulk RNA-seq data of.. 10090 MGSCv37 358
5 Microarray data from.. 9606 713
6 Bulk microarray expr.. 9606 211
7 Human bulk RNA-seq d.. 9606 GRCh38 114
labels
<List>
1 label.main,label.fine,label.ont
2 label.main,label.fine,label.ont
3 label.main,label.fine,label.ont
4 label.main,label.fine,label.ont
5 label.main,label.fine,label.ont
6 label.main,label.fine,label.ont
7 label.main,label.fine,label.ont
sources
<SplitDataFrameList>
1 PubMed:30449622:NA,ExperimentHub:EH3488:NA,ExperimentHub:EH3489:NA
2 PubMed:22955616:NA,PubMed:24091925:NA,PubMed:30643263:NA
3 PubMed:18800157:NA,GEO:GSE15907:NA,GEO:GSE37448:NA
4 PubMed:30858345:NA,URL:https://github.com/B..:NA,PubMed:30643263:NA
5 PubMed:24053356:NA,PubMed:30643263:NA,GitHub:dviraran/SingleR:adc4a0e4d5cfa79db18f..
6 PubMed:21241896:NA,GEO:GSE24759:NA,ExperimentHub:EH3490:NA
7 PubMed:30726743:NA,GEO:GSE107011:NA,ExperimentHub:EH3496:NA
The Monaco reference consists of bulk RNA-seq samples of sorted immune cell populations from GSE107011 (Monaco et al. 2019).
This is the human immune reference that best covers all of the bases for a typical PBMC sample. It provides expansive B and T cell subsets, differentiates between classical and non-classical monocytes, includes basic dendritic cell subsets, and also includes neutrophil and basophil samples to help identify small contaminating populations that may have slipped into a PBMC preparation.
monaco_immune <- fetchReference("monaco_immune", "2024-02-26")
colData(monaco_immune) |>
as.data.frame()
label.main label.fine label.ont
DZQV_CD8_naive CD8+ T cells Naive CD8 T cells CL:0000900
DZQV_CD8_CM CD8+ T cells Central memory CD8 T cells CL:0000907
DZQV_CD8_EM CD8+ T cells Effector memory CD8 T cells CL:0000913
DZQV_CD8_TE CD8+ T cells Terminal effector CD8 T cells CL:0001062
DZQV_MAIT T cells MAIT cells CL:0000940
DZQV_VD2+ T cells Vd2 gd T cells CL:0000798
DZQV_VD2- T cells Non-Vd2 gd T cells CL:0000798
DZQV_TFH CD4+ T cells Follicular helper T cells CL:0002038
DZQV_Treg CD4+ T cells T regulatory cells CL:0000815
DZQV_Th1 CD4+ T cells Th1 cells CL:0000545
DZQV_Th1/Th17 CD4+ T cells Th1/Th17 cells CL:0000912
DZQV_Th17 CD4+ T cells Th17 cells CL:0000899
DZQV_Th2 CD4+ T cells Th2 cells CL:0000546
DZQV_CD4_naive CD4+ T cells Naive CD4 T cells CL:0000895
DZQV_Progenitor Progenitors Progenitor cells CL:0002043
DZQV_B_naive B cells Naive B cells CL:0000788
DZQV_B_NSM B cells Non-switched memory B cells CL:0000970
DZQV_B_Ex B cells Exhausted B cells CL:0000236
DZQV_B_SM B cells Switched memory B cells CL:0000972
DZQV_Plasmablasts B cells Plasmablasts CL:0000980
DZQV_C_mono Monocytes Classical monocytes CL:0000860
DZQV_I_mono Monocytes Intermediate monocytes CL:0002393
DZQV_NC_mono Monocytes Non classical monocytes CL:0000875
DZQV_NK NK cells Natural killer cells CL:0000623
DZQV_pDC Dendritic cells Plasmacytoid dendritic cells CL:0000784
DZQV_mDC Dendritic cells Myeloid dendritic cells CL:0000782
DZQV_Neutrophils Neutrophils Low-density neutrophils CL:0000096
DZQV_Basophils Basophils Low-density basophils CL:0000043
925L_CD8_naive CD8+ T cells Naive CD8 T cells CL:0000900
925L_CD8_CM CD8+ T cells Central memory CD8 T cells CL:0000907
925L_CD8_EM CD8+ T cells Effector memory CD8 T cells CL:0000913
925L_CD8_TE CD8+ T cells Terminal effector CD8 T cells CL:0001062
925L_MAIT T cells MAIT cells CL:0000940
925L_VD2+ T cells Vd2 gd T cells CL:0000798
925L_VD2- T cells Non-Vd2 gd T cells CL:0000798
925L_TFH CD4+ T cells Follicular helper T cells CL:0002038
925L_Treg CD4+ T cells T regulatory cells CL:0000815
925L_Th1 CD4+ T cells Th1 cells CL:0000545
925L_Th1/Th17 CD4+ T cells Th1/Th17 cells CL:0000912
925L_Th17 CD4+ T cells Th17 cells CL:0000899
925L_Th2 CD4+ T cells Th2 cells CL:0000546
925L_CD4_naive CD4+ T cells Naive CD4 T cells CL:0000895
925L_CD4_TE CD4+ T cells Terminal effector CD4 T cells CL:0001044
925L_Progenitor Progenitors Progenitor cells CL:0002043
925L_B_naive B cells Naive B cells CL:0000788
925L_B_NSM B cells Non-switched memory B cells CL:0000970
925L_B_Ex B cells Exhausted B cells CL:0000236
925L_B_SM B cells Switched memory B cells CL:0000972
925L_Plasmablasts B cells Plasmablasts CL:0000980
925L_C_mono Monocytes Classical monocytes CL:0000860
925L_I_mono Monocytes Intermediate monocytes CL:0002393
925L_NC_mono Monocytes Non classical monocytes CL:0000875
925L_NK NK cells Natural killer cells CL:0000623
925L_pDC Dendritic cells Plasmacytoid dendritic cells CL:0000784
925L_mDC Dendritic cells Myeloid dendritic cells CL:0000782
925L_Neutrophils Neutrophils Low-density neutrophils CL:0000096
925L_Basophils Basophils Low-density basophils CL:0000043
9JD4_CD8_naive CD8+ T cells Naive CD8 T cells CL:0000900
9JD4_CD8_CM CD8+ T cells Central memory CD8 T cells CL:0000907
9JD4_CD8_EM CD8+ T cells Effector memory CD8 T cells CL:0000913
9JD4_CD8_TE CD8+ T cells Terminal effector CD8 T cells CL:0001062
9JD4_MAIT T cells MAIT cells CL:0000940
9JD4_VD2+ T cells Vd2 gd T cells CL:0000798
9JD4_VD2- T cells Non-Vd2 gd T cells CL:0000798
9JD4_TFH CD4+ T cells Follicular helper T cells CL:0002038
9JD4_Treg CD4+ T cells T regulatory cells CL:0000815
9JD4_Th1 CD4+ T cells Th1 cells CL:0000545
9JD4_Th1/Th17 CD4+ T cells Th1/Th17 cells CL:0000912
9JD4_Th17 CD4+ T cells Th17 cells CL:0000899
9JD4_Th2 CD4+ T cells Th2 cells CL:0000546
9JD4_CD4_naive CD4+ T cells Naive CD4 T cells CL:0000895
9JD4_CD4_TE CD4+ T cells Terminal effector CD4 T cells CL:0001044
9JD4_Progenitor Progenitors Progenitor cells CL:0002043
9JD4_B_naive B cells Naive B cells CL:0000788
9JD4_B_NSM B cells Non-switched memory B cells CL:0000970
9JD4_B_Ex B cells Exhausted B cells CL:0000236
9JD4_B_SM B cells Switched memory B cells CL:0000972
9JD4_Plasmablasts B cells Plasmablasts CL:0000980
9JD4_C_mono Monocytes Classical monocytes CL:0000860
9JD4_I_mono Monocytes Intermediate monocytes CL:0002393
9JD4_NC_mono Monocytes Non classical monocytes CL:0000875
9JD4_NK NK cells Natural killer cells CL:0000623
9JD4_pDC Dendritic cells Plasmacytoid dendritic cells CL:0000784
9JD4_mDC Dendritic cells Myeloid dendritic cells CL:0000782
9JD4_Neutrophils Neutrophils Low-density neutrophils CL:0000096
9JD4_Basophils Basophils Low-density basophils CL:0000043
G4YW_CD8_naive CD8+ T cells Naive CD8 T cells CL:0000900
G4YW_CD8_CM CD8+ T cells Central memory CD8 T cells CL:0000907
G4YW_CD8_EM CD8+ T cells Effector memory CD8 T cells CL:0000913
G4YW_CD8_TE CD8+ T cells Terminal effector CD8 T cells CL:0001062
G4YW_MAIT T cells MAIT cells CL:0000940
G4YW_VD2+ T cells Vd2 gd T cells CL:0000798
G4YW_VD2- T cells Non-Vd2 gd T cells CL:0000798
G4YW_TFH CD4+ T cells Follicular helper T cells CL:0002038
G4YW_Treg CD4+ T cells T regulatory cells CL:0000815
G4YW_Th1 CD4+ T cells Th1 cells CL:0000545
G4YW_Th1/Th17 CD4+ T cells Th1/Th17 cells CL:0000912
G4YW_Th17 CD4+ T cells Th17 cells CL:0000899
G4YW_Th2 CD4+ T cells Th2 cells CL:0000546
G4YW_CD4_naive CD4+ T cells Naive CD4 T cells CL:0000895
G4YW_Progenitor Progenitors Progenitor cells CL:0002043
G4YW_B_naive B cells Naive B cells CL:0000788
G4YW_B_NSM B cells Non-switched memory B cells CL:0000970
G4YW_B_Ex B cells Exhausted B cells CL:0000236
G4YW_B_SM B cells Switched memory B cells CL:0000972
G4YW_Plasmablasts B cells Plasmablasts CL:0000980
G4YW_C_mono Monocytes Classical monocytes CL:0000860
G4YW_I_mono Monocytes Intermediate monocytes CL:0002393
G4YW_NC_mono Monocytes Non classical monocytes CL:0000875
G4YW_NK NK cells Natural killer cells CL:0000623
G4YW_pDC Dendritic cells Plasmacytoid dendritic cells CL:0000784
G4YW_mDC Dendritic cells Myeloid dendritic cells CL:0000782
G4YW_Neutrophils Neutrophils Low-density neutrophils CL:0000096
G4YW_Basophils Basophils Low-density basophils CL:0000043
sessionInfo()
R version 4.4.1 (2024-06-14)
Platform: x86_64-pc-linux-gnu
Running under: Ubuntu 22.04.5 LTS
Matrix products: default
BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3
LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.20.so; LAPACK version 3.10.0
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
time zone: Etc/UTC
tzcode source: system (glibc)
attached base packages:
[1] stats4 stats graphics grDevices utils datasets methods
[8] base
other attached packages:
[1] celldex_1.16.0 SummarizedExperiment_1.36.0
[3] Biobase_2.66.0 GenomicRanges_1.58.0
[5] GenomeInfoDb_1.42.3 IRanges_2.40.1
[7] S4Vectors_0.44.0 BiocGenerics_0.52.0
[9] MatrixGenerics_1.18.1 matrixStats_1.4.1
[11] workflowr_1.7.1
loaded via a namespace (and not attached):
[1] tidyselect_1.2.1 alabaster.se_1.6.0
[3] dplyr_1.1.4 blob_1.2.4
[5] filelock_1.0.3 Biostrings_2.74.1
[7] fastmap_1.2.0 BiocFileCache_2.14.0
[9] promises_1.3.0 digest_0.6.37
[11] lifecycle_1.0.4 alabaster.matrix_1.6.1
[13] processx_3.8.4 KEGGREST_1.46.0
[15] alabaster.base_1.6.1 RSQLite_2.3.7
[17] magrittr_2.0.3 compiler_4.4.1
[19] rlang_1.1.4 sass_0.4.9
[21] tools_4.4.1 utf8_1.2.4
[23] yaml_2.3.10 knitr_1.48
[25] S4Arrays_1.6.0 bit_4.5.0
[27] curl_5.2.3 DelayedArray_0.32.0
[29] abind_1.4-8 HDF5Array_1.34.0
[31] gypsum_1.2.0 grid_4.4.1
[33] fansi_1.0.6 ExperimentHub_2.14.0
[35] git2r_0.35.0 Rhdf5lib_1.28.0
[37] cli_3.6.3 rmarkdown_2.28
[39] crayon_1.5.3 generics_0.1.3
[41] rstudioapi_0.17.1 httr_1.4.7
[43] DelayedMatrixStats_1.28.1 rhdf5_2.50.2
[45] DBI_1.2.3 cachem_1.1.0
[47] stringr_1.5.1 zlibbioc_1.52.0
[49] parallel_4.4.1 AnnotationDbi_1.68.0
[51] BiocManager_1.30.25 XVector_0.46.0
[53] alabaster.schemas_1.6.0 vctrs_0.6.5
[55] Matrix_1.7-0 jsonlite_1.8.9
[57] callr_3.7.6 bit64_4.5.2
[59] alabaster.ranges_1.6.0 jquerylib_0.1.4
[61] glue_1.8.0 ps_1.8.1
[63] stringi_1.8.4 BiocVersion_3.20.0
[65] later_1.3.2 UCSC.utils_1.2.0
[67] tibble_3.2.1 pillar_1.9.0
[69] rhdf5filters_1.18.0 rappdirs_0.3.3
[71] htmltools_0.5.8.1 GenomeInfoDbData_1.2.13
[73] httr2_1.0.5 R6_2.5.1
[75] dbplyr_2.5.0 sparseMatrixStats_1.18.0
[77] rprojroot_2.0.4 evaluate_1.0.1
[79] lattice_0.22-6 AnnotationHub_3.14.0
[81] png_0.1-8 memoise_2.0.1
[83] httpuv_1.6.15 bslib_0.8.0
[85] Rcpp_1.0.13 SparseArray_1.6.1
[87] whisker_0.4.1 xfun_0.48
[89] fs_1.6.4 getPass_0.2-4
[91] pkgconfig_2.0.3