Last updated: 2025-01-24

Checks: 7 0

Knit directory: muse/

This reproducible R Markdown analysis was created with workflowr (version 1.7.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20200712) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version eef0287. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    data/pbmc3k.csv
    Ignored:    data/pbmc3k.csv.gz
    Ignored:    data/pbmc3k/
    Ignored:    r_packages_4.4.0/
    Ignored:    r_packages_4.4.1/

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/fgsea_edger.Rmd) and HTML (docs/fgsea_edger.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd eef0287 Dave Tang 2025-01-24 Using fgsea with edgeR results

Installation

First install fgsea.

if (!require("BiocManager", quietly = TRUE))
  install.packages("BiocManager")

if (!require("fgsea", quietly = TRUE))
  BiocManager::install("fgsea")

library(fgsea)

edgeR results

An example differential gene expression results table.

edger_res <- readr::read_csv("https://raw.githubusercontent.com/davetang/muse/refs/heads/main/data/13970886_edger_res.csv", show_col_types = FALSE)
head(edger_res)
# A tibble: 6 × 6
  ensembl_gene_id  logFC logCPM      F  PValue adjusted_pvalue
  <chr>            <dbl>  <dbl>  <dbl>   <dbl>           <dbl>
1 ENSG00000000003  2.73   4.83   4.28  0.0684           0.109 
2 ENSG00000000005 -7.00   0.541 17.6   0.00216          0.0138
3 ENSG00000000419  0.120  5.34   0.114 0.743            0.776 
4 ENSG00000000457 -0.708  5.31   3.35  0.0993           0.145 
5 ENSG00000000460 -0.897  3.95   2.66  0.136            0.186 
6 ENSG00000000938  1.54   5.60   1.86  0.205            0.258 

Add ranking metric.

edger_res |>
  dplyr::mutate(rank_metric = logFC * -log10(PValue)) -> edger_res

Convert to Entrez Gene IDs

Use {org.Hs.eg.db}.

if (!require("org.Hs.eg.db", quietly = TRUE))
  BiocManager::install("org.Hs.eg.db")

Attaching package: 'BiocGenerics'
The following objects are masked from 'package:stats':

    IQR, mad, sd, var, xtabs
The following objects are masked from 'package:base':

    anyDuplicated, aperm, append, as.data.frame, basename, cbind,
    colnames, dirname, do.call, duplicated, eval, evalq, Filter, Find,
    get, grep, grepl, intersect, is.unsorted, lapply, Map, mapply,
    match, mget, order, paste, pmax, pmax.int, pmin, pmin.int,
    Position, rank, rbind, Reduce, rownames, sapply, saveRDS, setdiff,
    table, tapply, union, unique, unsplit, which.max, which.min
Welcome to Bioconductor

    Vignettes contain introductory material; view with
    'browseVignettes()'. To cite Bioconductor, see
    'citation("Biobase")', and for packages 'citation("pkgname")'.

Attaching package: 'S4Vectors'
The following object is masked from 'package:utils':

    findMatches
The following objects are masked from 'package:base':

    expand.grid, I, unname
suppressPackageStartupMessages(library(org.Hs.eg.db))

Convert to Entrez Gene IDs.

AnnotationDbi::select(
  org.Hs.eg.db,
  keys = edger_res$ensembl_gene_id,
  columns=c("ENSEMBL","ENTREZID"),
  keytype="ENSEMBL"
) -> ensembl_to_entrez
'select()' returned 1:many mapping between keys and columns
ensembl_to_entrez <- dplyr::rename(ensembl_to_entrez, "ensembl_gene_id" = ENSEMBL)

head(ensembl_to_entrez)
  ensembl_gene_id ENTREZID
1 ENSG00000000003     7105
2 ENSG00000000005    64102
3 ENSG00000000419     8813
4 ENSG00000000457    57147
5 ENSG00000000460    55732
6 ENSG00000000938     2268

Number of NAs.

table(is.na(ensembl_to_entrez$ENTREZID))

FALSE  TRUE 
28722 10968 

Hallmark gene sets

Use {msigdb}.

if (!require("msigdb", quietly = TRUE))
  BiocManager::install("msigdb")

if (!require("ExperimentHub", quietly = TRUE))
  BiocManager::install("ExperimentHub")

Attaching package: 'AnnotationHub'
The following object is masked from 'package:Biobase':

    cache
if (!require("GSEABase", quietly = TRUE))
  BiocManager::install("GSEABase")

Attaching package: 'graph'
The following object is masked from 'package:XML':

    addNode
suppressPackageStartupMessages(library(msigdb))
suppressPackageStartupMessages(library(ExperimentHub))
suppressPackageStartupMessages(library(GSEABase))

Query an ExperimentHub object.

eh <- ExperimentHub(ask = FALSE)
AnnotationHub::query(x = eh, pattern = 'msigdb')
ExperimentHub with 49 records
# snapshotDate(): 2024-10-24
# $dataprovider: Broad Institute, Emory University, EBI
# $species: Homo sapiens, Mus musculus
# $rdataclass: GSEABase::GeneSetCollection, list, data.frame
# additional mcols(): taxonomyid, genome, description,
#   coordinate_1_based, maintainer, rdatadateadded, preparerclass, tags,
#   rdatapath, sourceurl, sourcetype 
# retrieve records with, e.g., 'object[["EH5421"]]' 

           title                   
  EH5421 | msigdb.v7.2.hs.SYM      
  EH5422 | msigdb.v7.2.hs.EZID     
  EH5423 | msigdb.v7.2.mm.SYM      
  EH5424 | msigdb.v7.2.mm.EZID     
  EH6727 | MSigDB C8 MANNO MIDBRAIN
  ...      ...                     
  EH8296 | msigdb.v7.5.1.hs.SYM    
  EH8297 | msigdb.v7.5.1.mm.EZID   
  EH8298 | msigdb.v7.5.1.mm.idf    
  EH8299 | msigdb.v7.5.1.mm.SYM    
  EH8300 | imex_hsmm_0722          

Latest version.

AnnotationHub::query(x = eh, pattern = 'msigdb.*hs.EZID') |>
  tail(1) -> msigdb_hs_latest
msigdb_hs_latest
ExperimentHub with 1 record
# snapshotDate(): 2024-10-24
# names(): EH8294
# package(): msigdb
# $dataprovider: Broad Institute
# $species: Homo sapiens
# $rdataclass: GSEABase::GeneSetCollection
# $rdatadateadded: 2023-07-03
# $title: msigdb.v7.5.1.hs.EZID
# $description: Gene expression signatures (Homo sapiens) from the Molecular...
# $taxonomyid: 9606
# $genome: NA
# $sourcetype: XML
# $sourceurl: https://data.broadinstitute.org/gsea-msigdb/msigdb/release/7.5...
# $sourcesize: NA
# $tags: c("Homo_sapiens_Data", "Mus_musculus_Data") 
# retrieve record with 'object[["EH8294"]]' 

Download.

msigdb_hs_ezid <- eh[[names(msigdb_hs_latest)]]
see ?msigdb and browseVignettes('msigdb') for documentation
loading from cache

Collections.

table(sapply(lapply(msigdb_hs_ezid, collectionType), bcCategory))

   c1    c2    c3    c4    c5    c6    c7    c8     h 
  299  6180  3726   858 28005   189  5219   700    50 

Create gene lists from the Hallmark collection.

wanted <- sapply(lapply(msigdb_hs_ezid, collectionType), bcCategory) == "h"
hallmark_gs <- msigdb_hs_ezid[wanted]

hallmark_gs_list <- lapply(hallmark_gs, geneIds)
class(hallmark_gs_list)
[1] "list"
names(hallmark_gs_list) <- names(hallmark_gs)
head(hallmark_gs_list)
$HALLMARK_TNFA_SIGNALING_VIA_NFKB
  [1] "3726"   "2920"   "467"    "4792"   "7128"   "5743"   "2919"   "8870"  
  [9] "9308"   "6364"   "2921"   "23764"  "4791"   "7127"   "1839"   "1316"  
 [17] "330"    "5329"   "7538"   "3383"   "3725"   "1960"   "3553"   "597"   
 [25] "23645"  "80149"  "6648"   "4929"   "3552"   "5971"   "7185"   "7832"  
 [33] "1843"   "1326"   "2114"   "2152"   "6385"   "1958"   "3569"   "7124"  
 [41] "23135"  "4790"   "3976"   "5806"   "8061"   "3164"   "182"    "6351"  
 [49] "2643"   "6347"   "1827"   "1844"   "10938"  "9592"   "5966"   "8837"  
 [57] "8767"   "4794"   "8013"   "22822"  "51278"  "8744"   "2669"   "1647"  
 [65] "3627"   "10769"  "8553"   "1959"   "9021"   "11182"  "5734"   "1847"  
 [73] "5055"   "4783"   "5054"   "10221"  "25976"  "5970"   "329"    "6372"  
 [81] "9516"   "7130"   "960"    "3624"   "5328"   "4609"   "3604"   "6446"  
 [89] "10318"  "10135"  "2355"   "10957"  "3398"   "969"    "3575"   "1942"  
 [97] "7262"   "5209"   "6352"   "79693"  "3460"   "8878"   "10950"  "4616"  
[105] "8942"   "50486"  "694"    "4170"   "7422"   "5606"   "1026"   "3491"  
[113] "10010"  "3433"   "3606"   "7280"   "3659"   "2353"   "4973"   "388"   
[121] "374"    "4814"   "65986"  "8613"   "9314"   "6373"   "6303"   "1435"  
[129] "1880"   "56937"  "5791"   "7097"   "57007"  "7071"   "4082"   "3914"  
[137] "1051"   "9322"   "2150"   "687"    "3949"   "7050"   "127544" "55332" 
[145] "2683"   "11080"  "1437"   "5142"   "8303"   "5341"   "6776"   "23258" 
[153] "595"    "23586"  "8877"   "941"    "25816"  "57018"  "2526"   "9034"  
[161] "80176"  "8848"   "9334"   "150094" "23529"  "4780"   "2354"   "5187"  
[169] "10725"  "490"    "3593"   "3572"   "9120"   "19"     "3280"   "604"   
[177] "8660"   "6515"   "1052"   "51561"  "4088"   "6890"   "9242"   "64135" 
[185] "3601"   "79155"  "602"    "24145"  "24147"  "1906"   "10209"  "650"   
[193] "1846"   "10611"  "23308"  "9945"   "10365"  "3371"   "5271"   "4084"  

$HALLMARK_HYPOXIA
  [1] "5230"   "5163"   "2632"   "5211"   "226"    "2026"   "5236"   "10397" 
  [9] "3099"   "230"    "2821"   "4601"   "6513"   "5033"   "133"    "8974"  
 [17] "2023"   "5214"   "205"    "26355"  "5209"   "7422"   "665"    "7167"  
 [25] "30001"  "55818"  "901"    "3939"   "2997"   "2597"   "8553"   "51129" 
 [33] "3725"   "5054"   "4015"   "2645"   "8497"   "23764"  "54541"  "6515"  
 [41] "3486"   "4783"   "2353"   "3516"   "3098"   "10370"  "3669"   "2584"  
 [49] "26118"  "5837"   "6781"   "23036"  "694"    "123"    "1466"   "7436"  
 [57] "23210"  "2131"   "2152"   "5165"   "55139"  "7360"   "229"    "8614"  
 [65] "54206"  "2027"   "10957"  "3162"   "5228"   "26330"  "9435"   "55076" 
 [73] "63827"  "467"    "857"    "272"    "2719"   "3340"   "8660"   "8819"  
 [81] "2548"   "6385"   "8987"   "8870"   "5313"   "3484"   "5329"   "112464"
 [89] "8839"   "9215"   "25819"  "6275"   "58528"  "7538"   "1956"   "1907"  
 [97] "3423"   "1026"   "6095"   "1843"   "4282"   "5507"   "10570"  "11015" 
[105] "1837"   "136"    "9957"   "284119" "2908"   "1316"   "2239"   "3491"  
[113] "7128"   "771"    "3073"   "633"    "23645"  "55276"  "5292"   "25824" 
[121] "55577"  "1027"   "680"    "8277"   "4493"   "538"    "4502"   "9672"  
[129] "25976"  "5317"   "302"    "5224"   "1649"   "5578"   "2542"   "7852"  
[137] "1944"   "1356"   "8609"   "1490"   "9469"   "7163"   "56925"  "124872"
[145] "10891"  "596"    "2651"   "3036"   "54800"  "949"    "6576"   "6383"  
[153] "839"    "7428"   "2309"   "5155"   "126792" "6518"   "8406"   "1942"  
[161] "2745"   "57007"  "5066"   "7045"   "1634"   "6478"   "51316"  "2203"  
[169] "8459"   "5260"   "4627"   "1028"   "9380"   "5105"   "3623"   "3309"  
[177] "8509"   "23327"  "7162"   "7511"   "3569"   "6533"   "4214"   "3948"  
[185] "9590"   "26136"  "3798"   "3906"   "1289"   "2817"   "3069"   "10994" 
[193] "1463"   "7052"   "2113"   "3219"   "8991"   "2355"   "6820"   "7043"  

$HALLMARK_CHOLESTEROL_HOMEOSTASIS
 [1] "2224"   "1595"   "3422"   "2222"   "1717"   "6713"   "3157"   "50814" 
 [9] "4047"   "4597"   "3949"   "7108"   "230"    "10682"  "6319"   "10654" 
[17] "4598"   "4023"   "6309"   "9415"   "3156"   "51478"  "312"    "6721"  
[25] "5833"   "55902"  "467"    "127"    "23474"  "1891"   "875"    "2990"  
[33] "2194"   "3958"   "22809"  "308"    "94241"  "1119"   "2946"   "39"    
[41] "552"    "5359"   "1191"   "54206"  "57761"  "58191"  "51330"  "71"    
[49] "182"    "5641"   "26270"  "493869" "10957"  "118429" "114569" "928"   
[57] "5468"   "2731"   "6811"   "134429" "1499"   "27346"  "116496" "5165"  
[65] "5329"   "7869"   "2770"   "20"     "6311"   "4783"   "214"    "2171"  
[73] "6282"   "132864"

$HALLMARK_MITOTIC_SPINDLE
  [1] "9181"   "23332"  "3832"   "9493"   "57679"  "382"    "4650"   "4627"  
  [9] "10426"  "9793"   "29127"  "57580"  "50650"  "4926"   "6711"   "11004" 
 [17] "3799"   "7272"   "324"    "11190"  "5048"   "10435"  "9371"   "55704" 
 [25] "56992"  "332"    "116840" "4763"   "7248"   "996"    "11064"  "114791"
 [33] "24137"  "22919"  "55785"  "675"    "5347"   "5921"   "4751"   "8936"  
 [41] "7153"   "7204"   "9826"   "10300"  "9055"   "54443"  "55755"  "9126"  
 [49] "10844"  "9700"   "55201"  "201176" "9732"   "29901"  "3619"   "394"   
 [57] "2934"   "10276"  "10128"  "23637"  "2317"   "64411"  "121512" "29"    
 [65] "55835"  "4690"   "1063"   "9585"   "10163"  "4628"   "1062"   "9266"  
 [73] "4281"   "3831"   "57787"  "127829" "9702"   "8409"   "393"    "23580" 
 [81] "163786" "9113"   "4983"   "8976"   "4296"   "6654"   "25"     "7074"  
 [89] "23095"  "6453"   "134549" "8440"   "9787"   "613"    "10048"  "2037"  
 [97] "10801"  "11104"  "51174"  "22974"  "3797"   "357"    "85378"  "6709"  
[105] "23022"  "23647"  "9735"   "84376"  "25777"  "58526"  "1739"   "2316"  
[113] "79658"  "8476"   "23365"  "4082"   "51199"  "5108"   "10928"  "7430"  
[121] "85464"  "983"    "22930"  "10160"  "11346"  "54509"  "1894"   "2035"  
[129] "51735"  "3835"   "84333"  "6780"   "396"    "6790"   "26271"  "51203" 
[137] "5829"   "9564"   "23607"  "11214"  "10013"  "22994"  "3996"   "23192" 
[145] "5116"   "7840"   "11133"  "667"    "22920"  "151987" "9411"   "9462"  
[153] "9133"   "80119"  "5922"   "4739"   "8243"   "81"     "5311"   "7461"  
[161] "998"    "10403"  "9874"   "9344"   "6904"   "832"    "1794"   "2017"  
[169] "10051"  "10565"  "7277"   "4001"   "10006"  "6093"   "55125"  "699"   
[177] "50628"  "64857"  "253260" "10018"  "1778"   "6624"   "8874"   "140735"
[185] "4643"   "274"    "4853"   "5981"   "10611"  "89941"  "8470"   "11135" 
[193] "7414"   "6249"   "23012"  "7531"   "9771"   "55722"  "1453"  

$HALLMARK_WNT_BETA_CATENIN_SIGNALING
 [1] "4609"  "1499"  "3714"  "4851"  "28514" "8313"  "5664"  "8321"  "4855" 
[10] "51176" "8312"  "85407" "81029" "8454"  "182"   "9794"  "2648"  "2770" 
[19] "7475"  "5727"  "9612"  "27121" "3066"  "22943" "6932"  "7471"  "8650" 
[28] "6868"  "1856"  "5467"  "23385" "10014" "894"   "10023" "1454"  "3516" 
[37] "8325"  "7157"  "6502"  "23493" "23462" "79885"

$HALLMARK_TGF_BETA_SIGNALING
 [1] "7046"  "4092"  "7040"  "64750" "57154" "659"   "6498"  "6497"  "90"   
[10] "56937" "9612"  "5054"  "3726"  "4086"  "4091"  "23645" "7050"  "5045" 
[19] "4088"  "2280"  "6885"  "657"   "1499"  "28996" "7071"  "650"   "2022" 
[28] "324"   "5494"  "331"   "999"   "3397"  "7044"  "1028"  "51592" "11031"
[37] "7082"  "6574"  "1025"  "3399"  "9241"  "51742" "3460"  "3398"  "5499" 
[46] "6711"  "25937" "8412"  "7057"  "2339"  "3065"  "7323"  "4053"  "387"  

fgsea analysis

Rank metric distribution.

plot(hist(edger_res$rank_metric, breaks = 50))

Create ranks vector.

edger_res |>
  dplyr::inner_join(y = ensembl_to_entrez, by = "ensembl_gene_id", relationship = "many-to-many") |>
  dplyr::filter(!is.na(ENTREZID)) |>
  dplyr::group_by(ENTREZID) |>
  dplyr::mutate(ambiguous = ifelse(dplyr::n()>1, TRUE, FALSE)) |>
  dplyr::filter(!ambiguous) -> res
  
my_ranks <- res$rank_metric
my_names <- as.character(res$ENTREZID)
names(my_ranks) <- my_names
plot(hist(my_ranks, breaks = 50))

The fgsea() function runs the pre-ranked gene set enrichment analysis.

set.seed(1984)

fgseaRes <- fgsea(
  pathways = hallmark_gs_list, 
  stats = my_ranks,
  minSize=15,
  maxSize=500,
  nPermSimple = 200000
)
Warning in preparePathwaysAndStats(pathways, stats, minSize, maxSize, gseaParam, : There are ties in the preranked stats (2.44% of the list).
The order of those tied genes will be arbitrary, which may produce unexpected results.
Warning in fgseaMultilevel(pathways = pathways, stats = stats, minSize =
minSize, : There were 36 pathways for which P-values were not calculated
properly due to unbalanced (positive and negative) gene-level statistic values.
For such pathways pval, padj, NES, log2err are set to NA. You can try to
increase the value of the argument nPermSimple (for example set it nPermSimple
= 2000000)

Top 6 enriched pathways.

head(fgseaRes[order(pval), ])
                        pathway         pval         padj      log2err
                         <char>        <num>        <num>        <num>
1:     HALLMARK_NOTCH_SIGNALING 3.559469e-05 0.0004983257 5.573322e-01
2:        HALLMARK_ANGIOGENESIS 1.063389e-03 0.0074437263 4.550599e-01
3:     HALLMARK_SPERMATOGENESIS 3.347883e-01 1.0000000000 4.547319e-03
4: HALLMARK_PANCREAS_BETA_CELLS 4.714677e-01 1.0000000000 3.415898e-03
5:   HALLMARK_KRAS_SIGNALING_DN 8.693607e-01 1.0000000000 1.250537e-03
6:      HALLMARK_APICAL_SURFACE 9.995800e-01 1.0000000000 6.844827e-05
           ES        NES  size  leadingEdge
        <num>      <num> <int>       <list>
1:  0.6388199  2.4231911    31 2648, 11....
2:  0.4445579  1.7490871    35 6696, 70....
3: -0.5487978 -1.0257935   135 56903, 8....
4: -0.5614137 -1.0146014    40 5080, 47....
5: -0.5031756 -0.9463782   194 56154, 2....
6: -0.2987335 -0.5417546    44 116085, ....

Plot the most significantly enriched pathway.

plotEnrichment(
  hallmark_gs_list[[head(fgseaRes[order(pval), ], 1)$pathway]],
  my_ranks
) +
  ggplot2::labs(title=head(fgseaRes[order(pval), ], 1)$pathway)


sessionInfo()
R version 4.4.1 (2024-06-14)
Platform: x86_64-pc-linux-gnu
Running under: Ubuntu 22.04.5 LTS

Matrix products: default
BLAS:   /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3 
LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.20.so;  LAPACK version 3.10.0

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

time zone: Etc/UTC
tzcode source: system (glibc)

attached base packages:
[1] stats4    stats     graphics  grDevices utils     datasets  methods  
[8] base     

other attached packages:
 [1] GSEABase_1.68.0      graph_1.84.1         annotate_1.84.0     
 [4] XML_3.99-0.17        ExperimentHub_2.14.0 AnnotationHub_3.14.0
 [7] BiocFileCache_2.14.0 dbplyr_2.5.0         msigdb_1.14.0       
[10] org.Hs.eg.db_3.20.0  AnnotationDbi_1.68.0 IRanges_2.40.1      
[13] S4Vectors_0.44.0     Biobase_2.66.0       BiocGenerics_0.52.0 
[16] fgsea_1.32.2         BiocManager_1.30.25  workflowr_1.7.1     

loaded via a namespace (and not attached):
 [1] DBI_1.2.3               rlang_1.1.4             magrittr_2.0.3         
 [4] git2r_0.35.0            compiler_4.4.1          RSQLite_2.3.9          
 [7] getPass_0.2-4           png_0.1-8               callr_3.7.6            
[10] vctrs_0.6.5             stringr_1.5.1           pkgconfig_2.0.3        
[13] crayon_1.5.3            fastmap_1.2.0           XVector_0.46.0         
[16] labeling_0.4.3          utf8_1.2.4              promises_1.3.0         
[19] rmarkdown_2.28          tzdb_0.4.0              UCSC.utils_1.2.0       
[22] ps_1.8.1                purrr_1.0.2             bit_4.5.0              
[25] xfun_0.48               zlibbioc_1.52.0         cachem_1.1.0           
[28] GenomeInfoDb_1.42.1     jsonlite_1.8.9          blob_1.2.4             
[31] highr_0.11              later_1.3.2             BiocParallel_1.40.0    
[34] parallel_4.4.1          R6_2.5.1                bslib_0.8.0            
[37] stringi_1.8.4           jquerylib_0.1.4         Rcpp_1.0.13            
[40] knitr_1.48              readr_2.1.5             httpuv_1.6.15          
[43] Matrix_1.7-0            tidyselect_1.2.1        rstudioapi_0.17.1      
[46] yaml_2.3.10             codetools_0.2-20        curl_6.0.1             
[49] processx_3.8.4          lattice_0.22-6          tibble_3.2.1           
[52] withr_3.0.2             KEGGREST_1.46.0         evaluate_1.0.1         
[55] Biostrings_2.74.1       pillar_1.9.0            filelock_1.0.3         
[58] whisker_0.4.1           generics_0.1.3          vroom_1.6.5            
[61] rprojroot_2.0.4         BiocVersion_3.20.0      hms_1.1.3              
[64] ggplot2_3.5.1           munsell_0.5.1           scales_1.3.0           
[67] xtable_1.8-4            glue_1.8.0              tools_4.4.1            
[70] data.table_1.16.2       fs_1.6.4                fastmatch_1.1-4        
[73] cowplot_1.1.3           grid_4.4.1              colorspace_2.1-1       
[76] GenomeInfoDbData_1.2.13 cli_3.6.3               rappdirs_0.3.3         
[79] fansi_1.0.6             dplyr_1.1.4             gtable_0.3.6           
[82] sass_0.4.9              digest_0.6.37           farver_2.1.2           
[85] memoise_2.0.1           htmltools_0.5.8.1       lifecycle_1.0.4        
[88] httr_1.4.7              mime_0.12               bit64_4.5.2