Last updated: 2024-12-25
Checks: 7 0
Knit directory: muse/
This reproducible R Markdown analysis was created with workflowr (version 1.7.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20200712)
was run prior to running
the code in the R Markdown file. Setting a seed ensures that any results
that rely on randomness, e.g. subsampling or permutations, are
reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version ecf10e9. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for
the analysis have been committed to Git prior to generating the results
(you can use wflow_publish
or
wflow_git_commit
). workflowr only checks the R Markdown
file, but you know if there are other scripts or data files that it
depends on. Below is the status of the Git repository when the results
were generated:
Ignored files:
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: data/pbmc3k.csv
Ignored: data/pbmc3k.csv.gz
Ignored: data/pbmc3k/
Ignored: r_packages_4.4.0/
Ignored: r_packages_4.4.1/
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were
made to the R Markdown (analysis/seurat_markers.Rmd
) and
HTML (docs/seurat_markers.html
) files. If you’ve configured
a remote Git repository (see ?wflow_git_remote
), click on
the hyperlinks in the table below to view the files as they were in that
past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | ecf10e9 | Dave Tang | 2024-12-25 | FindMarkers in parallel |
html | 612e4f9 | Dave Tang | 2024-12-24 | Build site. |
Rmd | f0f7a57 | Dave Tang | 2024-12-24 | Finding Markers with Seurat |
Use the Peripheral Blood Mononuclear Cells (PBMCs) 2,700 cells dataset to test finding markers with Seurat.
Install the following packages, if necessary.
install.packages("remotes")
remotes::install_github("immunogenomics/presto")
install.packages("Seurat")
install.packages("bench")
Load Seurat
and bench
for some
benchmarking.
suppressPackageStartupMessages(library("Seurat"))
suppressPackageStartupMessages(library("bench"))
suppressPackageStartupMessages(library("presto"))
To follow the tutorial, you’ll need the 10X data, which can be download from AWS.
mkdir -p data/pbmc3k && cd data/pbmc3k
wget -c https://s3-us-west-2.amazonaws.com/10x.files/samples/cell/pbmc3k/pbmc3k_filtered_gene_bc_matrices.tar.gz
tar -xzf pbmc3k_filtered_gene_bc_matrices.tar.gz
Load 10x data into a matrix using Read10X()
.
pbmc.data <- Read10X(
data.dir = "data/pbmc3k/filtered_gene_bc_matrices/hg19/"
)
Create the Seurat object using CreateSeuratObject
; see
?SeuratObject
for more information on the class.
seurat_obj <- CreateSeuratObject(
counts = pbmc.data,
min.cells = 3,
min.features = 200,
project = "pbmc3k"
)
Warning: Feature names cannot have underscores ('_'), replacing with dashes
('-')
class(seurat_obj)
[1] "Seurat"
attr(,"package")
[1] "SeuratObject"
Run the workflow as separate steps; they can be piped together but sometimes errors occur, so it is useful to split up the steps.
debug_flag <- FALSE
seurat_obj <- NormalizeData(seurat_obj, normalization.method = "LogNormalize", scale.factor = 1e4, verbose = debug_flag)
seurat_obj <- FindVariableFeatures(seurat_obj, selection.method = 'vst', nfeatures = 2000, verbose = debug_flag)
seurat_obj <- ScaleData(seurat_obj, verbose = debug_flag)
seurat_obj <- RunPCA(seurat_obj, verbose = debug_flag)
seurat_obj <- RunUMAP(seurat_obj, dims = 1:30, verbose = debug_flag)
Warning: The default method for RunUMAP has changed from calling Python UMAP via reticulate to the R-native UWOT using the cosine metric
To use Python UMAP via reticulate, set umap.method to 'umap-learn' and metric to 'correlation'
This message will be shown once per session
seurat_obj <- FindNeighbors(seurat_obj, dims = 1:30, verbose = debug_flag)
seurat_obj <- FindClusters(seurat_obj, resolution = 0.5, verbose = debug_flag)
seurat_obj
An object of class Seurat
13714 features across 2700 samples within 1 assay
Active assay: RNA (13714 features, 2000 variable features)
3 layers present: counts, data, scale.data
2 dimensional reductions calculated: pca, umap
FindAllMarkers()
will find markers (differentially
expressed genes) for each of the identity classes in a dataset.
levels(Idents(seurat_obj))
[1] "0" "1" "2" "3" "4" "5" "6" "7"
Find all markers.
all_markers <- FindAllMarkers(seurat_obj, verbose = debug_flag)
dim(all_markers)
[1] 17899 7
FindMarkers()
finds markers (differentially expressed
genes) for identity classes.
cluster_0_markers <- FindMarkers(seurat_obj, ident.1 = "0")
dim(cluster_0_markers)
[1] 8434 5
Cluster 0 markers from FindAllMarkers()
.
all_markers |>
dplyr::filter(cluster == 0) |>
dim()
[1] 3139 7
The start of the results are the same.
head(cluster_0_markers)
p_val avg_log2FC pct.1 pct.2 p_val_adj
LDHB 1.547138e-240 1.9351689 0.922 0.473 2.121746e-236
RPS12 3.595829e-228 0.8665851 1.000 0.987 4.931320e-224
CD74 2.127919e-225 -3.1636831 0.735 0.925 2.918227e-221
HLA-DRB1 3.113535e-225 -4.3722870 0.129 0.715 4.269901e-221
CYBA 2.054958e-213 -1.8108145 0.730 0.933 2.818169e-209
HLA-DRA 7.109002e-213 -4.6393725 0.291 0.765 9.749286e-209
all_markers |>
dplyr::filter(cluster == 0) |>
dplyr::select(-cluster, -gene) |>
head()
p_val avg_log2FC pct.1 pct.2 p_val_adj
LDHB 1.547138e-240 1.9351689 0.922 0.473 2.121746e-236
RPS12 3.595829e-228 0.8665851 1.000 0.987 4.931320e-224
CD74 2.127919e-225 -3.1636831 0.735 0.925 2.918227e-221
HLA-DRB1 3.113535e-225 -4.3722870 0.129 0.715 4.269901e-221
CYBA 2.054958e-213 -1.8108145 0.730 0.933 2.818169e-209
HLA-DRA 7.109002e-213 -4.6393725 0.291 0.765 9.749286e-209
The tail of the results are the same too, except that in
FindAllMarkers()
results have been trimmed.
cluster_0_markers[3134:3139, ]
p_val avg_log2FC pct.1 pct.2 p_val_adj
SCML1 0.009913768 1.2125839 0.028 0.014 1
CGGBP1 0.009914211 0.3048076 0.152 0.117 1
CCT3 0.009950407 0.2610577 0.231 0.190 1
ZNF32 0.009955859 0.1339321 0.108 0.079 1
RNF214 0.009977100 0.8208791 0.043 0.025 1
P2RX7 0.009979523 -1.7709166 0.003 0.013 1
all_markers |>
dplyr::filter(cluster == 0) |>
dplyr::select(-cluster, -gene) |>
tail()
p_val avg_log2FC pct.1 pct.2 p_val_adj
SCML1 0.009913768 1.2125839 0.028 0.014 1
CGGBP1 0.009914211 0.3048076 0.152 0.117 1
CCT3 0.009950407 0.2610577 0.231 0.190 1
ZNF32 0.009955859 0.1339321 0.108 0.079 1
RNF214 0.009977100 0.8208791 0.043 0.025 1
P2RX7 0.009979523 -1.7709166 0.003 0.013 1
Trimming seems to be from p_val < 0.01
cluster_0_markers[3139:3142, ]
p_val avg_log2FC pct.1 pct.2 p_val_adj
P2RX7 0.009979523 -1.7709166 0.003 0.013 1
CBFB 0.010029322 0.6492086 0.068 0.046 1
ATF6B 0.010045052 -0.4047457 0.130 0.165 1
PCNT 0.010051913 -1.8088730 0.003 0.013 1
Find markers in parallel to speed up FindAllMarkers()
.
Use imap()
to get the name of each list (.y
);
.x
is each element of the list.
library(future)
library(future.apply)
clusters <- levels(Idents(seurat_obj))
plan(multisession, workers = 4)
markers <- future_lapply(
clusters,
function(x){
FindMarkers(seurat_obj, ident.1 = x)
},
future.seed = TRUE
)
names(markers) <- clusters
purrr::map(
markers,
\(x) tibble::rownames_to_column(.data = x, var = "gene") |> tibble::remove_rownames()
) |>
purrr::imap(~ dplyr::mutate(.x, cluster = .y)) |>
purrr::list_rbind() |>
dplyr::filter(p_val < 0.01) |>
dplyr::mutate(cluster = factor(cluster, levels = clusters)) |>
dplyr::select(p_val, avg_log2FC, pct.1, pct.2, p_val_adj, cluster, gene) -> all_markers_parallel
all.equal(
all_markers_parallel,
tibble::remove_rownames(all_markers)
)
[1] TRUE
sessionInfo()
R version 4.4.1 (2024-06-14)
Platform: x86_64-pc-linux-gnu
Running under: Ubuntu 22.04.5 LTS
Matrix products: default
BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3
LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.20.so; LAPACK version 3.10.0
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
time zone: Etc/UTC
tzcode source: system (glibc)
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] future.apply_1.11.3 future_1.34.0 presto_1.0.0
[4] data.table_1.16.2 Rcpp_1.0.13 bench_1.1.3
[7] Seurat_5.1.0 SeuratObject_5.0.2 sp_2.1-4
[10] workflowr_1.7.1
loaded via a namespace (and not attached):
[1] RColorBrewer_1.1-3 rstudioapi_0.17.1 jsonlite_1.8.9
[4] magrittr_2.0.3 spatstat.utils_3.1-0 farver_2.1.2
[7] rmarkdown_2.28 fs_1.6.4 vctrs_0.6.5
[10] ROCR_1.0-11 spatstat.explore_3.3-3 htmltools_0.5.8.1
[13] sass_0.4.9 sctransform_0.4.1 parallelly_1.38.0
[16] KernSmooth_2.23-24 bslib_0.8.0 htmlwidgets_1.6.4
[19] ica_1.0-3 plyr_1.8.9 plotly_4.10.4
[22] zoo_1.8-12 cachem_1.1.0 whisker_0.4.1
[25] igraph_2.1.2 mime_0.12 lifecycle_1.0.4
[28] pkgconfig_2.0.3 Matrix_1.7-0 R6_2.5.1
[31] fastmap_1.2.0 fitdistrplus_1.2-1 shiny_1.9.1
[34] digest_0.6.37 colorspace_2.1-1 patchwork_1.3.0
[37] ps_1.8.1 rprojroot_2.0.4 tensor_1.5
[40] RSpectra_0.16-2 irlba_2.3.5.1 progressr_0.15.0
[43] fansi_1.0.6 spatstat.sparse_3.1-0 httr_1.4.7
[46] polyclip_1.10-7 abind_1.4-8 compiler_4.4.1
[49] withr_3.0.2 fastDummies_1.7.4 R.utils_2.12.3
[52] MASS_7.3-60.2 tools_4.4.1 lmtest_0.9-40
[55] httpuv_1.6.15 goftest_1.2-3 R.oo_1.27.0
[58] glue_1.8.0 callr_3.7.6 nlme_3.1-164
[61] promises_1.3.0 grid_4.4.1 Rtsne_0.17
[64] getPass_0.2-4 cluster_2.1.6 reshape2_1.4.4
[67] generics_0.1.3 gtable_0.3.6 spatstat.data_3.1-2
[70] R.methodsS3_1.8.2 tidyr_1.3.1 utf8_1.2.4
[73] spatstat.geom_3.3-3 RcppAnnoy_0.0.22 ggrepel_0.9.6
[76] RANN_2.6.2 pillar_1.9.0 stringr_1.5.1
[79] spam_2.11-0 RcppHNSW_0.6.0 later_1.3.2
[82] splines_4.4.1 dplyr_1.1.4 lattice_0.22-6
[85] survival_3.6-4 deldir_2.0-4 tidyselect_1.2.1
[88] miniUI_0.1.1.1 pbapply_1.7-2 knitr_1.48
[91] git2r_0.35.0 gridExtra_2.3 scattermore_1.2
[94] xfun_0.48 matrixStats_1.4.1 stringi_1.8.4
[97] lazyeval_0.2.2 yaml_2.3.10 evaluate_1.0.1
[100] codetools_0.2-20 tibble_3.2.1 cli_3.6.3
[103] uwot_0.2.2 xtable_1.8-4 reticulate_1.39.0
[106] munsell_0.5.1 processx_3.8.4 jquerylib_0.1.4
[109] globals_0.16.3 spatstat.random_3.3-2 png_0.1-8
[112] spatstat.univar_3.0-1 parallel_4.4.1 ggplot2_3.5.1
[115] dotCall64_1.2 listenv_0.9.1 viridisLite_0.4.2
[118] scales_1.3.0 ggridges_0.5.6 leiden_0.4.3.1
[121] purrr_1.0.2 rlang_1.1.4 cowplot_1.1.3