Last updated: 2025-04-16

Checks: 7 0

Knit directory: muse/

This reproducible R Markdown analysis was created with workflowr (version 1.7.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20200712) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 41cf543. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rproj.user/
    Ignored:    data/1M_neurons_filtered_gene_bc_matrices_h5.h5
    Ignored:    data/293t/
    Ignored:    data/293t_3t3_filtered_gene_bc_matrices.tar.gz
    Ignored:    data/293t_filtered_gene_bc_matrices.tar.gz
    Ignored:    data/5k_Human_Donor1_PBMC_3p_gem-x_5k_Human_Donor1_PBMC_3p_gem-x_count_sample_filtered_feature_bc_matrix.h5
    Ignored:    data/5k_Human_Donor2_PBMC_3p_gem-x_5k_Human_Donor2_PBMC_3p_gem-x_count_sample_filtered_feature_bc_matrix.h5
    Ignored:    data/5k_Human_Donor3_PBMC_3p_gem-x_5k_Human_Donor3_PBMC_3p_gem-x_count_sample_filtered_feature_bc_matrix.h5
    Ignored:    data/5k_Human_Donor4_PBMC_3p_gem-x_5k_Human_Donor4_PBMC_3p_gem-x_count_sample_filtered_feature_bc_matrix.h5
    Ignored:    data/97516b79-8d08-46a6-b329-5d0a25b0be98.h5ad
    Ignored:    data/Parent_SC3v3_Human_Glioblastoma_filtered_feature_bc_matrix.tar.gz
    Ignored:    data/brain_counts/
    Ignored:    data/cl.obo
    Ignored:    data/cl.owl
    Ignored:    data/jurkat/
    Ignored:    data/jurkat:293t_50:50_filtered_gene_bc_matrices.tar.gz
    Ignored:    data/jurkat_293t/
    Ignored:    data/jurkat_filtered_gene_bc_matrices.tar.gz
    Ignored:    data/pbmc20k/
    Ignored:    data/pbmc20k_seurat/
    Ignored:    data/pbmc3k/
    Ignored:    data/pbmc3k_bpcells_mat/
    Ignored:    data/pbmc3k_seurat.rds
    Ignored:    data/pbmc4k_filtered_gene_bc_matrices.tar.gz
    Ignored:    data/pbmc_1k_v3_filtered_feature_bc_matrix.h5
    Ignored:    data/pbmc_1k_v3_raw_feature_bc_matrix.h5
    Ignored:    data/refdata-gex-GRCh38-2020-A.tar.gz
    Ignored:    data/seurat_1m_neuron.rds
    Ignored:    data/t_3k_filtered_gene_bc_matrices.tar.gz
    Ignored:    r_packages_4.4.1/

Untracked files:
    Untracked:  analysis/bioc_scrnaseq.Rmd
    Untracked:  pbmc3k_before_filtering.rds
    Untracked:  pbmc3k_save_rds.rds
    Untracked:  rsem.merged.gene_counts.tsv

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/seurat_save.Rmd) and HTML (docs/seurat_save.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 41cf543 Dave Tang 2025-04-16 Save as separate RDS instead of additional assay when using BPCells
html 1de8ba4 Dave Tang 2025-04-16 Build site.
Rmd 445cb01 Dave Tang 2025-04-16 Save additional RDS
html 68b9532 Dave Tang 2025-04-16 Build site.
Rmd e923354 Dave Tang 2025-04-16 Assay classes
html 24107a2 Dave Tang 2025-04-16 Build site.
Rmd 5dd72fd Dave Tang 2025-04-16 Save additional assay
html a22d5e1 Dave Tang 2025-04-15 Build site.
Rmd 77f2810 Dave Tang 2025-04-15 Add miscellaneous data
html 478564c Dave Tang 2025-04-15 Build site.
Rmd deec653 Dave Tang 2025-04-15 Saving Seurat objects

if ("BPCells" %in% row.names(installed.packages()) == FALSE){
  remotes::install_github("bnprks/BPCells/r")
}
suppressPackageStartupMessages(library(BPCells))
suppressPackageStartupMessages(library(Seurat))

Load Data

Load from my server.

pbmc3k <- readRDS(url("https://davetang.org/file/pbmc3k_seurat.rds", "rb"))
pbmc3k
An object of class Seurat 
32738 features across 2700 samples within 1 assay 
Active assay: RNA (32738 features, 0 variable features)
 1 layer present: counts

Use BPCells

Sparse matrix.

class(pbmc3k@assays$RNA$counts)
[1] "dgCMatrix"
attr(,"package")
[1] "Matrix"

Write a matrix directory and load the matrix using {BPCells}.

my_outdir <- "data/pbmc3k_bpcells_mat"
if(!dir.exists(my_outdir)){
  BPCells::write_matrix_dir(
    mat = pbmc3k@assays$RNA$counts,
    dir = my_outdir
  )
}

# Now that we have the matrix on disk, we can load it
pbmc3k.mat <- open_matrix_dir(dir = my_outdir)
pbmc3k.mat
32738 x 2700 IterableMatrix object with class MatrixDir

Row names: MIR1302-10, FAM138A ... AC002321.1
Col names: AAACATACAACCAC-1, AAACATTGAGCTAC-1 ... TTTGCATGCCTCAC-1

Data type: double
Storage order: column major

Queued Operations:
1. Load compressed matrix from directory /home/rstudio/muse/data/pbmc3k_bpcells_mat

Create a Seurat object.

pbmc3k_bpcells <- CreateSeuratObject(
  counts = pbmc3k.mat,
  project = 'pbmc3k',
  min.cells = 3,
  min.features = 200
)

pbmc3k_bpcells@assays$RNA$counts
13714 x 2700 IterableMatrix object with class RenameDims

Row names: AL627309.1, AP006222.2 ... SRSF10.1
Col names: AAACATACAACCAC-1, AAACATTGAGCTAC-1 ... TTTGCATGCCTCAC-1

Data type: double
Storage order: column major

Queued Operations:
1. Load compressed matrix from directory /home/rstudio/muse/data/pbmc3k_bpcells_mat
2. Select rows: 6, 9 ... 32733 and cols: 1, 2 ... 2700
3. Reset dimnames

Seurat version 4

Mitochondrial percent.

mito.genes <- grep(pattern = "^MT-", x = rownames(x = pbmc3k_bpcells@assays$RNA), ignore.case = TRUE, value = TRUE)

pbmc3k_bpcells[["percent.mt"]] <- PercentageFeatureSet(pbmc3k_bpcells, features = mito.genes)
VlnPlot(pbmc3k_bpcells, features = c("nFeature_RNA", "nCount_RNA", "percent.mt"), ncol = 3, layer = "counts")

Version Author Date
24107a2 Dave Tang 2025-04-16

Save original data into RAW assay before filtering.

pbmc3k_bpcells[["RAW"]] <- pbmc3k_bpcells@assays$RNA
Warning: Key 'rna_' taken, using 'raw_' instead
Seurat::Assays(pbmc3k_bpcells)
[1] "RNA" "RAW"
Seurat::DefaultAssay(pbmc3k_bpcells)
[1] "RNA"

Save separate RDS file.

saveRDS(object = pbmc3k_bpcells, file = "pbmc3k_before_filtering.rds")

Filter.

pbmc3k_bpcells <- subset(pbmc3k_bpcells, subset = percent.mt < 15)
pbmc3k_bpcells
An object of class Seurat 
27428 features across 2698 samples within 2 assays 
Active assay: RNA (13714 features, 0 variable features)
 1 layer present: counts
 1 other assay present: RAW

Unfortunately, the RAW assay becomes filtered as well.

dim(pbmc3k_bpcells@assays$RNA$counts)
[1] 13714  2698
dim(pbmc3k_bpcells@assays$RAW$counts)
[1] 13714  2698

Seurat workflow.

debug_flag <- FALSE
start_time <- Sys.time()

pbmc3k_bpcells <- NormalizeData(pbmc3k_bpcells, normalization.method = "LogNormalize")
Normalizing layer: counts
pbmc3k_bpcells <- FindVariableFeatures(pbmc3k_bpcells, selection.method = 'vst', nfeatures = 2000, verbose = debug_flag)
pbmc3k_bpcells <- ScaleData(pbmc3k_bpcells, verbose = debug_flag)
pbmc3k_bpcells <- RunPCA(pbmc3k_bpcells, verbose = debug_flag)
pbmc3k_bpcells <- RunUMAP(pbmc3k_bpcells, dims = 1:30, verbose = debug_flag)
Warning: The default method for RunUMAP has changed from calling Python UMAP via reticulate to the R-native UWOT using the cosine metric
To use Python UMAP via reticulate, set umap.method to 'umap-learn' and metric to 'correlation'
This message will be shown once per session
pbmc3k_bpcells <- FindNeighbors(pbmc3k_bpcells, dims = 1:30, verbose = debug_flag)
pbmc3k_bpcells <- FindClusters(pbmc3k_bpcells, resolution = 0.5, verbose = debug_flag)
pbmc3k_bpcells
An object of class Seurat 
27428 features across 2698 samples within 2 assays 
Active assay: RNA (13714 features, 2000 variable features)
 3 layers present: counts, data, scale.data
 1 other assay present: RAW
 2 dimensional reductions calculated: pca, umap
end_time <- Sys.time()
end_time - start_time
Time difference of 11.79401 secs

Counts.

pbmc3k_bpcells@assays$RNA$counts
13714 x 2698 IterableMatrix object with class RenameDims

Row names: AL627309.1, AP006222.2 ... SRSF10.1
Col names: AAACATACAACCAC-1, AAACATTGAGCTAC-1 ... TTTGCATGCCTCAC-1

Data type: double
Storage order: column major

Queued Operations:
1. Load compressed matrix from directory /home/rstudio/muse/data/pbmc3k_bpcells_mat
2. Select rows: 6, 9 ... 32733 and cols: 1, 2 ... 2700
3. Reset dimnames

Data.

pbmc3k_bpcells@assays$RNA$data
13714 x 2698 IterableMatrix object with class RenameDims

Row names: AL627309.1, AP006222.2 ... SRSF10.1
Col names: AAACATACAACCAC-1, AAACATTGAGCTAC-1 ... TTTGCATGCCTCAC-1

Data type: double
Storage order: column major

Queued Operations:
1. Load compressed matrix from directory /home/rstudio/muse/data/pbmc3k_bpcells_mat
2. Select rows: 6, 9 ... 32733 and cols: 1, 2 ... 2700
3. Reset dimnames
4. Scale by 1e+04
5. Scale columns by 0.000413, 0.000204 ... 0.000504
6. Transform log1p
7. Reset dimnames

Scale data.

pbmc3k_bpcells@assays$RNA$scale.data
2000 x 2698 IterableMatrix object with class RenameDims

Row names: ISG15, CPSF3L ... MT-ND6
Col names: AAACATACAACCAC-1, AAACATTGAGCTAC-1 ... TTTGCATGCCTCAC-1

Data type: double
Storage order: column major

Queued Operations:
1. Load compressed matrix from directory /home/rstudio/muse/data/pbmc3k_bpcells_mat
2. Select rows: 43, 63 ... 32708 and cols: 1, 2 ... 2700
3. Reset dimnames
4. Scale by 1e+04
5. Scale columns by 0.000413, 0.000204 ... 0.000504
6. Transform log1p
7. Select rows: 514, 139 ... 580 and cols: all
8. Reset dimnames
9. Transform min by row: 5.2, 19.4 ... 2.3
10. Scale rows by 1.95, 0.55 ... 4.4
11. Shift rows by -0.143, -0.645 ... -0.132
12. Select rows: 636, 1273 ... 455 and cols: all
13. Reset dimnames

Plots

DimPlot(pbmc3k_bpcells)

Version Author Date
24107a2 Dave Tang 2025-04-16
478564c Dave Tang 2025-04-15

Add miscellaneous data

Get and set miscellaneous data.

Misc(pbmc3k_bpcells)
list()

Set and output.

Misc(pbmc3k_bpcells, slot = "seed") <- 1984
Misc(pbmc3k_bpcells, slot = "author") <- "Davo"
Misc(pbmc3k_bpcells)
$seed
[1] 1984

$author
[1] "Davo"

Get specific slot.

Misc(pbmc3k_bpcells, slot = "author")
[1] "Davo"

Exporting

Save.

saveRDS(object = pbmc3k_bpcells, file = "pbmc3k_save_rds.rds")

Load.

pbmc3k_read_rds <- readRDS("pbmc3k_save_rds.rds")
pbmc3k_read_rds@assays$RNA$counts
13714 x 2698 IterableMatrix object with class RenameDims

Row names: AL627309.1, AP006222.2 ... SRSF10.1
Col names: AAACATACAACCAC-1, AAACATTGAGCTAC-1 ... TTTGCATGCCTCAC-1

Data type: double
Storage order: column major

Queued Operations:
1. Load compressed matrix from directory /home/rstudio/muse/data/pbmc3k_bpcells_mat
2. Select rows: 6, 9 ... 32733 and cols: 1, 2 ... 2700
3. Reset dimnames
pbmc3k_read_rds@assays$RNA$data
13714 x 2698 IterableMatrix object with class RenameDims

Row names: AL627309.1, AP006222.2 ... SRSF10.1
Col names: AAACATACAACCAC-1, AAACATTGAGCTAC-1 ... TTTGCATGCCTCAC-1

Data type: double
Storage order: column major

Queued Operations:
1. Load compressed matrix from directory /home/rstudio/muse/data/pbmc3k_bpcells_mat
2. Select rows: 6, 9 ... 32733 and cols: 1, 2 ... 2700
3. Reset dimnames
4. Scale by 1e+04
5. Scale columns by 0.000413, 0.000204 ... 0.000504
6. Transform log1p
7. Reset dimnames
pbmc3k_read_rds@assays$RNA$scale.data
2000 x 2698 IterableMatrix object with class RenameDims

Row names: ISG15, CPSF3L ... MT-ND6
Col names: AAACATACAACCAC-1, AAACATTGAGCTAC-1 ... TTTGCATGCCTCAC-1

Data type: double
Storage order: column major

Queued Operations:
1. Load compressed matrix from directory /home/rstudio/muse/data/pbmc3k_bpcells_mat
2. Select rows: 43, 63 ... 32708 and cols: 1, 2 ... 2700
3. Reset dimnames
4. Scale by 1e+04
5. Scale columns by 0.000413, 0.000204 ... 0.000504
6. Transform log1p
7. Select rows: 514, 139 ... 580 and cols: all
8. Reset dimnames
9. Transform min by row: 5.2, 19.4 ... 2.3
10. Scale rows by 1.95, 0.55 ... 4.4
11. Shift rows by -0.143, -0.645 ... -0.132
12. Select rows: 636, 1273 ... 455 and cols: all
13. Reset dimnames
pbmc3k_read_rds
An object of class Seurat 
27428 features across 2698 samples within 2 assays 
Active assay: RNA (13714 features, 2000 variable features)
 3 layers present: counts, data, scale.data
 1 other assay present: RAW
 2 dimensional reductions calculated: pca, umap

Get miscellaneous data.

Misc(pbmc3k_read_rds)
$seed
[1] 1984

$author
[1] "Davo"

Check RAW assay.

class(pbmc3k_read_rds@assays$RAW$counts)
[1] "RenameDims"
attr(,"package")
[1] "BPCells"
class(pbmc3k_read_rds@assays$RNA$counts)
[1] "RenameDims"
attr(,"package")
[1] "BPCells"
dim(pbmc3k_read_rds@assays$RAW$counts)
[1] 13714  2698
dim(pbmc3k_read_rds@assays$RNA$counts)
[1] 13714  2698

Load RDS that was saved before filtering.

pbmc3k_before_filtering <- readRDS("pbmc3k_before_filtering.rds")
class(pbmc3k_before_filtering@assays$RAW$counts)
[1] "RenameDims"
attr(,"package")
[1] "BPCells"
class(pbmc3k_before_filtering@assays$RNA$counts)
[1] "RenameDims"
attr(,"package")
[1] "BPCells"
dim(pbmc3k_before_filtering@assays$RAW$counts)
[1] 13714  2700
dim(pbmc3k_before_filtering@assays$RNA$counts)
[1] 13714  2700

sessionInfo()
R version 4.4.1 (2024-06-14)
Platform: x86_64-pc-linux-gnu
Running under: Ubuntu 22.04.5 LTS

Matrix products: default
BLAS:   /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3 
LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.20.so;  LAPACK version 3.10.0

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

time zone: Etc/UTC
tzcode source: system (glibc)

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] Seurat_5.2.1       SeuratObject_5.0.2 sp_2.2-0           BPCells_0.3.0     
[5] workflowr_1.7.1   

loaded via a namespace (and not attached):
  [1] RColorBrewer_1.1-3      rstudioapi_0.17.1       jsonlite_1.8.9         
  [4] magrittr_2.0.3          ggbeeswarm_0.7.2        spatstat.utils_3.1-2   
  [7] farver_2.1.2            rmarkdown_2.28          fs_1.6.4               
 [10] zlibbioc_1.52.0         vctrs_0.6.5             ROCR_1.0-11            
 [13] spatstat.explore_3.3-4  htmltools_0.5.8.1       sass_0.4.9             
 [16] sctransform_0.4.1       parallelly_1.38.0       KernSmooth_2.23-24     
 [19] bslib_0.8.0             htmlwidgets_1.6.4       ica_1.0-3              
 [22] plyr_1.8.9              plotly_4.10.4           zoo_1.8-13             
 [25] cachem_1.1.0            whisker_0.4.1           igraph_2.1.4           
 [28] mime_0.12               lifecycle_1.0.4         pkgconfig_2.0.3        
 [31] Matrix_1.7-0            R6_2.5.1                fastmap_1.2.0          
 [34] GenomeInfoDbData_1.2.13 MatrixGenerics_1.18.1   fitdistrplus_1.2-2     
 [37] future_1.34.0           shiny_1.10.0            digest_0.6.37          
 [40] colorspace_2.1-1        patchwork_1.3.0         S4Vectors_0.44.0       
 [43] ps_1.8.1                rprojroot_2.0.4         tensor_1.5             
 [46] RSpectra_0.16-2         irlba_2.3.5.1           GenomicRanges_1.58.0   
 [49] labeling_0.4.3          progressr_0.15.0        spatstat.sparse_3.1-0  
 [52] polyclip_1.10-7         httr_1.4.7              abind_1.4-8            
 [55] compiler_4.4.1          withr_3.0.2             fastDummies_1.7.5      
 [58] highr_0.11              MASS_7.3-60.2           tools_4.4.1            
 [61] vipor_0.4.7             lmtest_0.9-40           beeswarm_0.4.0         
 [64] httpuv_1.6.15           future.apply_1.11.3     goftest_1.2-3          
 [67] glue_1.8.0              callr_3.7.6             nlme_3.1-164           
 [70] promises_1.3.2          grid_4.4.1              Rtsne_0.17             
 [73] getPass_0.2-4           cluster_2.1.6           reshape2_1.4.4         
 [76] generics_0.1.3          gtable_0.3.6            spatstat.data_3.1-4    
 [79] tidyr_1.3.1             data.table_1.16.2       XVector_0.46.0         
 [82] BiocGenerics_0.52.0     spatstat.geom_3.3-5     RcppAnnoy_0.0.22       
 [85] ggrepel_0.9.6           RANN_2.6.2              pillar_1.10.1          
 [88] stringr_1.5.1           spam_2.11-1             RcppHNSW_0.6.0         
 [91] later_1.3.2             splines_4.4.1           dplyr_1.1.4            
 [94] lattice_0.22-6          deldir_2.0-4            survival_3.6-4         
 [97] tidyselect_1.2.1        miniUI_0.1.1.1          pbapply_1.7-2          
[100] knitr_1.48              git2r_0.35.0            gridExtra_2.3          
[103] IRanges_2.40.1          scattermore_1.2         stats4_4.4.1           
[106] xfun_0.48               matrixStats_1.5.0       stringi_1.8.4          
[109] UCSC.utils_1.2.0        lazyeval_0.2.2          yaml_2.3.10            
[112] evaluate_1.0.1          codetools_0.2-20        tibble_3.2.1           
[115] cli_3.6.3               uwot_0.2.3              xtable_1.8-4           
[118] reticulate_1.41.0       munsell_0.5.1           processx_3.8.4         
[121] jquerylib_0.1.4         Rcpp_1.0.13             GenomeInfoDb_1.42.3    
[124] spatstat.random_3.3-2   globals_0.16.3          png_0.1-8              
[127] ggrastr_1.0.2           spatstat.univar_3.1-2   parallel_4.4.1         
[130] ggplot2_3.5.1           dotCall64_1.2           listenv_0.9.1          
[133] viridisLite_0.4.2       scales_1.3.0            ggridges_0.5.6         
[136] purrr_1.0.2             rlang_1.1.4             cowplot_1.1.3