Last updated: 2025-05-07

Checks: 7 0

Knit directory: muse/

This reproducible R Markdown analysis was created with workflowr (version 1.7.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20200712) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 990a827. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rproj.user/
    Ignored:    data/1M_neurons_filtered_gene_bc_matrices_h5.h5
    Ignored:    data/293t/
    Ignored:    data/293t_3t3_filtered_gene_bc_matrices.tar.gz
    Ignored:    data/293t_filtered_gene_bc_matrices.tar.gz
    Ignored:    data/5k_Human_Donor1_PBMC_3p_gem-x_5k_Human_Donor1_PBMC_3p_gem-x_count_sample_filtered_feature_bc_matrix.h5
    Ignored:    data/5k_Human_Donor2_PBMC_3p_gem-x_5k_Human_Donor2_PBMC_3p_gem-x_count_sample_filtered_feature_bc_matrix.h5
    Ignored:    data/5k_Human_Donor3_PBMC_3p_gem-x_5k_Human_Donor3_PBMC_3p_gem-x_count_sample_filtered_feature_bc_matrix.h5
    Ignored:    data/5k_Human_Donor4_PBMC_3p_gem-x_5k_Human_Donor4_PBMC_3p_gem-x_count_sample_filtered_feature_bc_matrix.h5
    Ignored:    data/97516b79-8d08-46a6-b329-5d0a25b0be98.h5ad
    Ignored:    data/Parent_SC3v3_Human_Glioblastoma_filtered_feature_bc_matrix.tar.gz
    Ignored:    data/brain_counts/
    Ignored:    data/cl.obo
    Ignored:    data/cl.owl
    Ignored:    data/jurkat/
    Ignored:    data/jurkat:293t_50:50_filtered_gene_bc_matrices.tar.gz
    Ignored:    data/jurkat_293t/
    Ignored:    data/jurkat_filtered_gene_bc_matrices.tar.gz
    Ignored:    data/pbmc20k/
    Ignored:    data/pbmc20k_seurat/
    Ignored:    data/pbmc3k/
    Ignored:    data/pbmc3k_bpcells_mat/
    Ignored:    data/pbmc3k_seurat.rds
    Ignored:    data/pbmc4k_filtered_gene_bc_matrices.tar.gz
    Ignored:    data/pbmc_1k_v3_filtered_feature_bc_matrix.h5
    Ignored:    data/pbmc_1k_v3_raw_feature_bc_matrix.h5
    Ignored:    data/refdata-gex-GRCh38-2020-A.tar.gz
    Ignored:    data/seurat_1m_neuron.rds
    Ignored:    data/t_3k_filtered_gene_bc_matrices.tar.gz
    Ignored:    r_packages_4.4.1/

Untracked files:
    Untracked:  Nothobranchius_furzeri.Nfu_20140520.113.gtf.gz
    Untracked:  analysis/bioc_scrnaseq.Rmd
    Untracked:  bpcells_matrix/
    Untracked:  data/GCF_043380555.1-RS_2024_12_gene_ontology.gaf.gz
    Untracked:  m3/
    Untracked:  pbmc3k_before_filtering.rds
    Untracked:  pbmc3k_save_rds.rds
    Untracked:  rsem.merged.gene_counts.tsv

Unstaged changes:
    Modified:   data/nfurzeri_gene_id_to_go_id.csv.gz
    Modified:   data/nfurzeri_gene_info.csv.gz

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/turquoise_killifish.Rmd) and HTML (docs/turquoise_killifish.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 990a827 Dave Tang 2025-05-07 Lookup table
html 074ec50 Dave Tang 2025-05-07 Build site.
Rmd 331a019 Dave Tang 2025-05-07 GAF file
html 9228995 Dave Tang 2025-03-04 Build site.
Rmd 225a1d1 Dave Tang 2025-03-04 nothobranchius_furzeri

The biomaRt package provides an interface to BioMart databases provided by Ensembl.

biomaRt provides an interface to a growing collection of databases implementing the BioMart software suite. The package enables retrieval of large amounts of data in a uniform way without the need to know the underlying database schemas or write complex SQL queries. The most prominent examples of BioMart databases are maintain by Ensembl, which provides biomaRt users direct access to a diverse set of data and enables a wide range of powerful online queries from gene annotation to database mining.

For more information, check out the Accessing Ensembl annotation with biomaRt guide.

Installation

To begin, install the {biomaRt} package.

if (!require("BiocManager", quietly = TRUE))
    install.packages("BiocManager")

BiocManager::install("biomaRt")

Package

Load package.

packageVersion("biomaRt")
[1] '2.62.1'
suppressPackageStartupMessages(library(biomaRt))

Getting started

Use mirro.

ensembl <- useEnsembl(biomart = "ensembl", mirror = "asia")
ensembl
Object of class 'Mart':
  Using the ENSEMBL_MART_ENSEMBL BioMart database
  No dataset selected.

Connect to the selected BioMart database by using useMart().

avail_datasets <- listDatasets(ensembl)
head(avail_datasets)
                       dataset                           description
1 abrachyrhynchus_gene_ensembl Pink-footed goose genes (ASM259213v1)
2     acalliptera_gene_ensembl      Eastern happy genes (fAstCal1.3)
3   acarolinensis_gene_ensembl       Green anole genes (AnoCar2.0v2)
4    acchrysaetos_gene_ensembl       Golden eagle genes (bAquChr1.2)
5    acitrinellus_gene_ensembl        Midas cichlid genes (Midas_v5)
6    amelanoleuca_gene_ensembl       Giant panda genes (ASM200744v2)
      version
1 ASM259213v1
2  fAstCal1.3
3 AnoCar2.0v2
4  bAquChr1.2
5    Midas_v5
6 ASM200744v2

Look for human datasets by searching the description column.

idx <- grep(pattern = "furzeri", avail_datasets$dataset, ignore.case = TRUE)
avail_datasets[idx, ]
                  dataset                              description      version
117 nfurzeri_gene_ensembl Turquoise killifish genes (Nfu_20140520) Nfu_20140520

Connect to the selected BioMart database and turquoise killifish dataset.

ensembl <- useEnsembl(biomart = "ensembl", mirror = "asia", dataset=avail_datasets[idx, 'dataset'])
ensembl
Object of class 'Mart':
  Using the ENSEMBL_MART_ENSEMBL BioMart database
  Using the nfurzeri_gene_ensembl dataset

Building a query, requires three things:

  1. filters
  2. attributes
  3. values

Use listFilters() to show available filters.

avail_filters <- listFilters(ensembl)
head(avail_filters)
                        name                            description
1            chromosome_name               Chromosome/scaffold name
2                      start                                  Start
3                        end                                    End
4                     strand                                 Strand
5         chromosomal_region e.g. 1:100:10000:-1, 1:100000:200000:1
6 with_entrezgene_trans_name  With EntrezGene transcript name ID(s)

Use listAttributes() to show available attributes.

avail_attributes <- listAttributes(ensembl)
avail_attributes |>
  head()
                           name                  description         page
1               ensembl_gene_id               Gene stable ID feature_page
2       ensembl_gene_id_version       Gene stable ID version feature_page
3         ensembl_transcript_id         Transcript stable ID feature_page
4 ensembl_transcript_id_version Transcript stable ID version feature_page
5            ensembl_peptide_id            Protein stable ID feature_page
6    ensembl_peptide_id_version    Protein stable ID version feature_page

The getBM() function is the main query function in {biomaRt}; use it once you have identified your attributes of interest and filters to use.

gene_ids <- c("ENSNFUG00015000040", "ENSNFUG00015000042", "ENSNFUG00015000043", "ENSNFUG00015000127")

getBM(
  attributes=c('ensembl_gene_id', 'external_gene_name', 'description'),
  filters = 'ensembl_gene_id',
  values = gene_ids,
  mart = ensembl
) -> res

res
     ensembl_gene_id external_gene_name
1 ENSNFUG00015000040                   
2 ENSNFUG00015000042              irf2b
3 ENSNFUG00015000043              CASP3
4 ENSNFUG00015000127            SLC38A2
                                                               description
1                                                                         
2     interferon regulatory factor 2b [Source:ZFIN;Acc:ZDB-GENE-041212-38]
3                    caspase 3 [Source:UniProtKB Gene Name;Acc:A0A8C6K862]
4 solute carrier family 38 member 2 [Source:ZFIN;Acc:ZDB-GENE-030131-9659]

All gene IDs.

gtf_file <- "https://ftp.ensembl.org/pub/release-113/gtf/nothobranchius_furzeri/Nothobranchius_furzeri.Nfu_20140520.113.gtf.gz"
if(file.exists(basename(gtf_file)) == FALSE){
  download.file(url = gtf_file, destfile = basename(gtf_file))
}

gtf_cols <- c(
  "seqname",
  "source",
  "feature",
  "start",
  "end",
  "score",
  "strand",
  "frame",
  "attribute"
)

gtf <- readr::read_tsv(file = gtf_file, comment = "#", col_names = gtf_cols, show_col_types = FALSE)
gtf |>
  dplyr::filter(feature == "gene") |>
  dplyr::select(attribute) |>
  tidyr::separate_rows(attribute, sep = ";\\s*") |>
  dplyr::filter(grepl("gene_id", attribute)) |>
  tidyr::separate(attribute, c('key', 'value'), sep = "\\s") |>
  dplyr::pull(value) |>
  gsub(pattern ='"', replacement = "") -> all_gene_ids

length(all_gene_ids) == length(unique(all_gene_ids))
[1] TRUE

Get gene names and descriptions.

getBM(
  attributes=c('ensembl_gene_id', 'external_gene_name', 'description'),
  filters = 'ensembl_gene_id',
  values = all_gene_ids,
  mart = ensembl
) -> all_gene_info

head(all_gene_info)
     ensembl_gene_id external_gene_name
1 ENSNFUG00015000040                   
2 ENSNFUG00015000041                   
3 ENSNFUG00015000042              irf2b
4 ENSNFUG00015000043              CASP3
5 ENSNFUG00015000044              cenpu
6 ENSNFUG00015000045            ST3GAL5
                                                                             description
1                                                                                       
2                                                                                       
3                   interferon regulatory factor 2b [Source:ZFIN;Acc:ZDB-GENE-041212-38]
4                                  caspase 3 [Source:UniProtKB Gene Name;Acc:A0A8C6K862]
5                                                                                       
6 ST3 beta-galactoside alpha-2,3-sialyltransferase 5 [Source:ZFIN;Acc:ZDB-GENE-060322-1]

Save lookup table.

readr::write_csv(x = all_gene_info, file = "data/nfurzeri_gene_info.csv.gz")

Gene Ontology terms

Find GO attribute names.

grep("^go", avail_attributes$name, ignore.case=TRUE, value=TRUE)
[1] "go_id"                  "go_linkage_type"        "goslim_goa_accession"  
[4] "goslim_goa_description"

Query.

getBM(
  attributes=c("ensembl_gene_id", "go_id"),
  filters="ensembl_gene_id",
  values = all_gene_ids,
  mart = ensembl
) -> all_gene_go_ids

head(all_gene_go_ids)
     ensembl_gene_id      go_id
1 ENSNFUG00015000040           
2 ENSNFUG00015000041 GO:0007156
3 ENSNFUG00015000041 GO:0005886
4 ENSNFUG00015000041 GO:0007399
5 ENSNFUG00015000041 GO:0098609
6 ENSNFUG00015000041 GO:0050808

Save GO table.

readr::write_csv(x = all_gene_go_ids, file = "data/nfurzeri_gene_id_to_go_id.csv.gz")

NCBI

NCBI Genome assembly NfurGRZ-RIMD1 reference.

Download GAF file *_gene_ontology.gaf.gz, which contains Gene Ontology (GO) annotation of the annotated genes in GO Annotation File GAF format.

gaf_url <- 'https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/043/380/555/GCF_043380555.1_NfurGRZ-RIMD1/GCF_043380555.1-RS_2024_12_gene_ontology.gaf.gz'
gaf_file <- paste0("data/", basename(gaf_url))

if(file.exists(gaf_file) == FALSE){
  download.file(url = gaf_url, destfile = gaf_file)
}

The annotation flat file format is comprised of 17 tab-delimited fields.

gaf_cols <- c("DB","GeneID","Symbol","Qualifier","GO_ID","Reference","Evidence_Code","With_From","Aspect","Gene_Name","Gene_Synonym","Type","Taxon","Date","Assigned_By","Annot_Ext","Gene_Product_Form_ID")

gaf <- readr::read_tsv(file = gaf_file, comment = '!', show_col_types = FALSE, col_names = gaf_cols)
head(gaf)
# A tibble: 6 × 17
  DB      GeneID Symbol Qualifier GO_ID Reference Evidence_Code With_From Aspect
  <chr>    <dbl> <chr>  <chr>     <chr> <chr>     <chr>         <chr>     <chr> 
1 NCBIGe… 1.07e8 psd2   enables   GO:0… PMID:223… IEA           InterPro… F     
2 NCBIGe… 1.07e8 psd2   enables   GO:0… PMID:223… IEA           InterPro… F     
3 NCBIGe… 1.07e8 psd2   enables   GO:0… PMID:223… IEA           InterPro… F     
4 NCBIGe… 1.07e8 psd2   involved… GO:0… PMID:223… IEA           InterPro… P     
5 NCBIGe… 1.07e8 cnn2   involved… GO:0… PMID:300… IEA           PANTHER:… P     
6 NCBIGe… 1.07e8 cnn2   located_… GO:0… PMID:300… IEA           PANTHER:… C     
# ℹ 8 more variables: Gene_Name <chr>, Gene_Synonym <lgl>, Type <chr>,
#   Taxon <chr>, Date <dbl>, Assigned_By <chr>, Annot_Ext <lgl>,
#   Gene_Product_Form_ID <lgl>

Qualifiers.

table(gaf$Qualifier)

    enables involved_in  located_in     part_of 
      36393       36175       23210        5183 

Evidence code.

table(gaf$Evidence_Code)

   IEA 
100961 

Lookup table; check whether lookup is unique.

library(dplyr)

Attaching package: 'dplyr'
The following object is masked from 'package:biomaRt':

    select
The following objects are masked from 'package:stats':

    filter, lag
The following objects are masked from 'package:base':

    intersect, setdiff, setequal, union
select(gaf, GeneID, GO_ID) |>
  group_by(GeneID, GO_ID) |>
  summarise(n = n(), .groups = "keep") |>
  arrange(-n) -> lookup_table

head(lookup_table)
# A tibble: 6 × 3
# Groups:   GeneID, GO_ID [6]
     GeneID GO_ID          n
      <dbl> <chr>      <int>
1 107372345 GO:0005975     2
2 107372345 GO:0016020     2
3 107372345 GO:0016758     2
4 107372351 GO:0004674     2
5 107372352 GO:0017025     2
6 107372360 GO:0004930     2

Look at an example of a duplicated entry.

eg <- head(lookup_table, n = 1)

dplyr::filter(gaf, GeneID == eg$GeneID, GO_ID == eg$GO_ID)
# A tibble: 2 × 17
  DB      GeneID Symbol Qualifier GO_ID Reference Evidence_Code With_From Aspect
  <chr>    <dbl> <chr>  <chr>     <chr> <chr>     <chr>         <chr>     <chr> 
1 NCBIGe… 1.07e8 LOC10… involved… GO:0… PMID:223… IEA           InterPro… P     
2 NCBIGe… 1.07e8 LOC10… involved… GO:0… PMID:300… IEA           UniProtK… P     
# ℹ 8 more variables: Gene_Name <chr>, Gene_Synonym <lgl>, Type <chr>,
#   Taxon <chr>, Date <dbl>, Assigned_By <chr>, Annot_Ext <lgl>,
#   Gene_Product_Form_ID <lgl>

sessionInfo()
R version 4.4.1 (2024-06-14)
Platform: x86_64-pc-linux-gnu
Running under: Ubuntu 22.04.5 LTS

Matrix products: default
BLAS:   /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3 
LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.20.so;  LAPACK version 3.10.0

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

time zone: Etc/UTC
tzcode source: system (glibc)

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] dplyr_1.1.4     biomaRt_2.62.1  workflowr_1.7.1

loaded via a namespace (and not attached):
 [1] KEGGREST_1.46.0         xfun_0.48               bslib_0.8.0            
 [4] httr2_1.1.0             processx_3.8.4          Biobase_2.66.0         
 [7] tzdb_0.4.0              callr_3.7.6             generics_0.1.3         
[10] vctrs_0.6.5             tools_4.4.1             ps_1.8.1               
[13] parallel_4.4.1          curl_6.2.1              stats4_4.4.1           
[16] tibble_3.2.1            AnnotationDbi_1.68.0    RSQLite_2.3.9          
[19] blob_1.2.4              pkgconfig_2.0.3         dbplyr_2.5.0           
[22] S4Vectors_0.44.0        lifecycle_1.0.4         GenomeInfoDbData_1.2.13
[25] compiler_4.4.1          stringr_1.5.1           git2r_0.35.0           
[28] Biostrings_2.74.1       progress_1.2.3          getPass_0.2-4          
[31] httpuv_1.6.15           GenomeInfoDb_1.42.3     htmltools_0.5.8.1      
[34] sass_0.4.9              yaml_2.3.10             tidyr_1.3.1            
[37] later_1.3.2             pillar_1.10.1           crayon_1.5.3           
[40] jquerylib_0.1.4         whisker_0.4.1           cachem_1.1.0           
[43] tidyselect_1.2.1        digest_0.6.37           stringi_1.8.4          
[46] purrr_1.0.2             rprojroot_2.0.4         fastmap_1.2.0          
[49] cli_3.6.3               magrittr_2.0.3          utf8_1.2.4             
[52] readr_2.1.5             withr_3.0.2             filelock_1.0.3         
[55] prettyunits_1.2.0       UCSC.utils_1.2.0        promises_1.3.2         
[58] rappdirs_0.3.3          bit64_4.5.2             rmarkdown_2.28         
[61] XVector_0.46.0          httr_1.4.7              bit_4.5.0              
[64] png_0.1-8               hms_1.1.3               memoise_2.0.1          
[67] evaluate_1.0.1          knitr_1.48              IRanges_2.40.1         
[70] BiocFileCache_2.14.0    rlang_1.1.4             Rcpp_1.0.13            
[73] glue_1.8.0              DBI_1.2.3               xml2_1.3.6             
[76] BiocGenerics_0.52.0     vroom_1.6.5             rstudioapi_0.17.1      
[79] jsonlite_1.8.9          R6_2.5.1                fs_1.6.4               
[82] zlibbioc_1.52.0