Last updated: 2025-04-03

Checks: 7 0

Knit directory: muse/

This reproducible R Markdown analysis was created with workflowr (version 1.7.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20200712) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version b6fe07d. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rproj.user/
    Ignored:    data/1M_neurons_filtered_gene_bc_matrices_h5.h5
    Ignored:    data/293t/
    Ignored:    data/293t_3t3_filtered_gene_bc_matrices.tar.gz
    Ignored:    data/293t_filtered_gene_bc_matrices.tar.gz
    Ignored:    data/5k_Human_Donor1_PBMC_3p_gem-x_5k_Human_Donor1_PBMC_3p_gem-x_count_sample_filtered_feature_bc_matrix.h5
    Ignored:    data/5k_Human_Donor2_PBMC_3p_gem-x_5k_Human_Donor2_PBMC_3p_gem-x_count_sample_filtered_feature_bc_matrix.h5
    Ignored:    data/5k_Human_Donor3_PBMC_3p_gem-x_5k_Human_Donor3_PBMC_3p_gem-x_count_sample_filtered_feature_bc_matrix.h5
    Ignored:    data/5k_Human_Donor4_PBMC_3p_gem-x_5k_Human_Donor4_PBMC_3p_gem-x_count_sample_filtered_feature_bc_matrix.h5
    Ignored:    data/97516b79-8d08-46a6-b329-5d0a25b0be98.h5ad
    Ignored:    data/Parent_SC3v3_Human_Glioblastoma_filtered_feature_bc_matrix.tar.gz
    Ignored:    data/brain_counts/
    Ignored:    data/cl.obo
    Ignored:    data/cl.owl
    Ignored:    data/jurkat/
    Ignored:    data/jurkat:293t_50:50_filtered_gene_bc_matrices.tar.gz
    Ignored:    data/jurkat_293t/
    Ignored:    data/jurkat_filtered_gene_bc_matrices.tar.gz
    Ignored:    data/pbmc20k/
    Ignored:    data/pbmc20k_seurat/
    Ignored:    data/pbmc3k/
    Ignored:    data/pbmc3k_seurat.rds
    Ignored:    data/pbmc4k_filtered_gene_bc_matrices.tar.gz
    Ignored:    data/pbmc_1k_v3_filtered_feature_bc_matrix.h5
    Ignored:    data/pbmc_1k_v3_raw_feature_bc_matrix.h5
    Ignored:    data/refdata-gex-GRCh38-2020-A.tar.gz
    Ignored:    data/seurat_1m_neuron.rds
    Ignored:    data/t_3k_filtered_gene_bc_matrices.tar.gz
    Ignored:    r_packages_4.4.1/

Untracked files:
    Untracked:  analysis/bioc_scrnaseq.Rmd
    Untracked:  rsem.merged.gene_counts.tsv

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/seurat_rerun.Rmd) and HTML (docs/seurat_rerun.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd b6fe07d Dave Tang 2025-04-03 UMAPs for comparing Seurat version 4
html 2e98820 Dave Tang 2025-04-03 Build site.
Rmd 56646ff Dave Tang 2025-04-03 Test gene and cell/barcode order separately
html 4e49f2d Dave Tang 2025-04-01 Build site.
Rmd 476c4ad Dave Tang 2025-04-01 Create new Seurat object with the same order
html 319c615 Dave Tang 2025-04-01 Build site.
Rmd 8c145e4 Dave Tang 2025-04-01 Using Seurat version 4
html 4f8b0d2 Dave Tang 2025-04-01 Build site.
Rmd 90696a0 Dave Tang 2025-04-01 Re-running Seurat

If I re-run Seurat in the same manner with the same dataset, will I get identical results?

Seurat object

Import raw pbmc3k dataset from my server.

seurat_obj <- readRDS(url("https://davetang.org/file/pbmc3k_seurat.rds", "rb"))
seurat_obj
An object of class Seurat 
32738 features across 2700 samples within 1 assay 
Active assay: RNA (32738 features, 0 variable features)
 1 layer present: counts

Filter.

pbmc3k <- CreateSeuratObject(
  counts = seurat_obj@assays$RNA$counts,
  min.cells = 3,
  min.features = 200,
  project = "pbmc3k"
)
pbmc3k
An object of class Seurat 
13714 features across 2700 samples within 1 assay 
Active assay: RNA (13714 features, 0 variable features)
 1 layer present: counts

Seurat workflows

Seurat workflows as functions.

seurat_wf_v4 <- function(seurat_obj, scale_factor = 1e4, num_features = 2000, num_pcs = 30, cluster_res = 0.5, debug_flag = FALSE){
  
  seurat_obj <- NormalizeData(seurat_obj, normalization.method = "LogNormalize", scale.factor = scale_factor, verbose = debug_flag)
  seurat_obj <- FindVariableFeatures(seurat_obj, selection.method = 'vst', nfeatures = num_features, verbose = debug_flag)
  seurat_obj <- ScaleData(seurat_obj, verbose = debug_flag)
  seurat_obj <- RunPCA(seurat_obj, verbose = debug_flag)
  seurat_obj <- RunUMAP(seurat_obj, dims = 1:num_pcs, verbose = debug_flag)
  seurat_obj <- FindNeighbors(seurat_obj, dims = 1:num_pcs, verbose = debug_flag)
  seurat_obj <- FindClusters(seurat_obj, resolution = cluster_res, verbose = debug_flag)
  
  seurat_obj
}

seurat_wf_v5 <- function(seurat_obj, scale_factor = 1e4, num_features = 2000, num_pcs = 30, cluster_res = 0.5, debug_flag = FALSE){
  
  seurat_obj <- SCTransform(seurat_obj, verbose = debug_flag)
  seurat_obj <- RunPCA(seurat_obj, verbose = debug_flag)
  seurat_obj <- RunUMAP(seurat_obj, dims = 1:num_pcs, verbose = debug_flag)
  seurat_obj <- FindNeighbors(seurat_obj, dims = 1:num_pcs, verbose = debug_flag)
  seurat_obj <- FindClusters(seurat_obj, resolution = cluster_res, verbose = debug_flag)
  
  seurat_obj
}

First run

Process pbmc3k using the Seurat version 5 workflow.

pbmc3k_v5_1 <- seurat_wf_v5(pbmc3k)
Warning: The default method for RunUMAP has changed from calling Python UMAP via reticulate to the R-native UWOT using the cosine metric
To use Python UMAP via reticulate, set umap.method to 'umap-learn' and metric to 'correlation'
This message will be shown once per session
pbmc3k_v5_1
An object of class Seurat 
26286 features across 2700 samples within 2 assays 
Active assay: SCT (12572 features, 3000 variable features)
 3 layers present: counts, data, scale.data
 1 other assay present: RNA
 2 dimensional reductions calculated: pca, umap

Second run

Process pbmc3k using the Seurat version 5 workflow again.

pbmc3k_v5_2 <- seurat_wf_v5(pbmc3k)
pbmc3k_v5_2
An object of class Seurat 
26286 features across 2700 samples within 2 assays 
Active assay: SCT (12572 features, 3000 variable features)
 3 layers present: counts, data, scale.data
 1 other assay present: RNA
 2 dimensional reductions calculated: pca, umap

Compare first and second runs

Compare UMAPs.

DimPlot(pbmc3k_v5_1) + DimPlot(pbmc3k_v5_2)

Version Author Date
4f8b0d2 Dave Tang 2025-04-01

Looks the same but let’s double check.

identical(
  pbmc3k_v5_1@reductions$umap@cell.embeddings,
  pbmc3k_v5_2@reductions$umap@cell.embeddings
)
[1] TRUE

Compare clustering.

identical(
  row.names(pbmc3k_v5_1@meta.data),
  row.names(pbmc3k_v5_2@meta.data)
)
[1] TRUE
identical(
  pbmc3k_v5_1@meta.data$seurat_clusters,
  pbmc3k_v5_2@meta.data$seurat_clusters
)
[1] TRUE

Reorder

Use the same dataset but re-order the genes in the count matrix randomly.

my_mat <- seurat_obj@assays$RNA$counts
set.seed(1984)
row_order <- sample(rownames(my_mat))
my_mat <- my_mat[row_order, ]

stopifnot(all(rownames(my_mat) %in% rownames(seurat_obj@assays$RNA$counts)))
stopifnot(all(colnames(my_mat) %in% colnames(seurat_obj@assays$RNA$counts)))

pbmc3k_reorder_genes <- CreateSeuratObject(
  counts = my_mat,
  min.cells = 3,
  min.features = 200,
  project = "pbmc3k"
)

stopifnot(all(colnames(pbmc3k_reorder_genes@assays$RNA$counts) %in% colnames(pbmc3k@assays$RNA$counts)))
stopifnot(all(rownames(pbmc3k_reorder_genes@assays$RNA$counts) %in% rownames(pbmc3k@assays$RNA$counts)))

pbmc3k_reorder_genes
An object of class Seurat 
13714 features across 2700 samples within 1 assay 
Active assay: RNA (13714 features, 0 variable features)
 1 layer present: counts

Use the same dataset but re-order the barcodes in the count matrix randomly.

my_mat <- seurat_obj@assays$RNA$counts
set.seed(1984)
col_order <- sample(colnames(my_mat))
my_mat <- my_mat[, col_order]

stopifnot(all(rownames(my_mat) %in% rownames(seurat_obj@assays$RNA$counts)))
stopifnot(all(colnames(my_mat) %in% colnames(seurat_obj@assays$RNA$counts)))

pbmc3k_reorder_cells <- CreateSeuratObject(
  counts = my_mat,
  min.cells = 3,
  min.features = 200,
  project = "pbmc3k"
)

stopifnot(all(colnames(pbmc3k_reorder_cells@assays$RNA$counts) %in% colnames(pbmc3k@assays$RNA$counts)))
stopifnot(all(rownames(pbmc3k_reorder_cells@assays$RNA$counts) %in% rownames(pbmc3k@assays$RNA$counts)))

pbmc3k_reorder_cells
An object of class Seurat 
13714 features across 2700 samples within 1 assay 
Active assay: RNA (13714 features, 0 variable features)
 1 layer present: counts

Process the re-ordered pbmc3k dataset using the Seurat version 5 workflow again.

pbmc3k_v5_genes <- seurat_wf_v5(pbmc3k_reorder_genes)
pbmc3k_v5_cells <- seurat_wf_v5(pbmc3k_reorder_cells)

pbmc3k_v5_1
An object of class Seurat 
26286 features across 2700 samples within 2 assays 
Active assay: SCT (12572 features, 3000 variable features)
 3 layers present: counts, data, scale.data
 1 other assay present: RNA
 2 dimensional reductions calculated: pca, umap
pbmc3k_v5_cells
An object of class Seurat 
26286 features across 2700 samples within 2 assays 
Active assay: SCT (12572 features, 3000 variable features)
 3 layers present: counts, data, scale.data
 1 other assay present: RNA
 2 dimensional reductions calculated: pca, umap

Compare third run

Compare UMAPs.

(DimPlot(pbmc3k_v5_1) + ggtitle("Re-ordered genes")) + DimPlot(pbmc3k_v5_genes)

Version Author Date
2e98820 Dave Tang 2025-04-03
4f8b0d2 Dave Tang 2025-04-01
(DimPlot(pbmc3k_v5_1) + ggtitle("Re-ordered cells")) + DimPlot(pbmc3k_v5_cells)

Version Author Date
2e98820 Dave Tang 2025-04-03

Compare clustering.

compare_clustering <- function(obj1, obj2){
  idx <- match(row.names(obj1@meta.data), row.names(obj2@meta.data))
  stopifnot(row.names(obj1@meta.data) == row.names(obj2@meta.data)[idx])
  table(
    obj1@meta.data$seurat_clusters,
    obj2@meta.data$seurat_clusters[idx]
  )
}

compare_clustering(pbmc3k_v5_1, pbmc3k_v5_genes)
   
      0   1   2   3   4   5   6   7   8   9
  0 970   0   4   0   0   0   0   0   1   0
  1   0 497   0   0   0   0   0   0   0   0
  2   1   0 365   0   0   0   0   0   0   0
  3   0   0   0 359   0   0   0   0   0   0
  4   0   0   1   0 156   0   0   0   0   0
  5   0   0   0   0   0 154   0   0   0   0
  6   3   0   0   0   0   0  97   0   0   0
  7   2   0  25   0   0   0   0   0  19   0
  8   0   0   0   0   0   0   0  34   0   0
  9   0   0   0   0   0   0   0   0   0  12
compare_clustering(pbmc3k_v5_1, pbmc3k_v5_cells)
   
      0   1   2   3   4   5   6   7   8   9
  0 970   0   5   0   0   0   0   0   0   0
  1   0 497   0   0   0   0   0   0   0   0
  2   1   0 365   0   0   0   0   0   0   0
  3   0   0   5 354   0   0   0   0   0   0
  4   0   0   1   0 156   0   0   0   0   0
  5   0   0   0   0   0 154   0   0   0   0
  6   0   0   0   0   0   0 100   0   0   0
  7   1   0  25   1   0   0   0   0  19   0
  8   0   0   0   0   0   0   0  34   0   0
  9   0   0   0   0   0   0   0   0   0  12
compare_clustering(pbmc3k_v5_genes, pbmc3k_v5_cells)
   
      0   1   2   3   4   5   6   7   8   9
  0 971   0   2   0   0   0   3   0   0   0
  1   0 497   0   0   0   0   0   0   0   0
  2   0   0 393   1   1   0   0   0   0   0
  3   0   0   5 354   0   0   0   0   0   0
  4   0   0   1   0 155   0   0   0   0   0
  5   0   0   0   0   0 154   0   0   0   0
  6   0   0   0   0   0   0  97   0   0   0
  7   0   0   0   0   0   0   0  34   0   0
  8   1   0   0   0   0   0   0   0  19   0
  9   0   0   0   0   0   0   0   0   0  12

Use Seurat version 4

What if we used version 4?

pbmc3k_v4_1 <- seurat_wf_v4(pbmc3k)
pbmc3k_v4_genes <- seurat_wf_v4(pbmc3k_reorder_genes)
pbmc3k_v4_cells <- seurat_wf_v4(pbmc3k_reorder_cells)

(DimPlot(pbmc3k_v4_1) + ggtitle("Re-ordered genes")) + DimPlot(pbmc3k_v4_genes)

(DimPlot(pbmc3k_v4_1) + ggtitle("Re-ordered cells")) + DimPlot(pbmc3k_v4_cells)

compare_clustering(pbmc3k_v4_1, pbmc3k_v4_genes)
   
       0    1    2    3    4    5    6    7
  0 1187    0    0    0    0    0    0    0
  1    0  491    0    0    0    0    0    0
  2    0    0  351    0    0    0    0    0
  3    0    0    0  301    0    0    0    0
  4    0    0    0    0  163    0    0    0
  5    0    0    0    0    0  161    0    0
  6    0    0    0    0    0    0   32    0
  7    0    0    0    0    0    0    0   14
compare_clustering(pbmc3k_v4_1, pbmc3k_v4_cells)
   
       0    1    2    3    4    5    6    7
  0 1182    0    0    5    0    0    0    0
  1    0  489    0    0    2    0    0    0
  2    0    0  351    0    0    0    0    0
  3    6    0    0  295    0    0    0    0
  4    0    0    0    1    0  162    0    0
  5    0    0    0    0  161    0    0    0
  6    0    0    0    0    0    0   32    0
  7    0    1    0    0    0    0    0   13

Re-ordering genes results in the same results using Seurat version 4 but different results when re-ordering cells.

Same order

Since it seems a different order of barcodes/cells generates slightly different results, what if we used the same order? (The easiest way is to simply create a new Seurat object with the new order. Originally, I had tried to re-order an existing Seurat object but ended up creating an invalid Seurat object.)

pbmc3k <- CreateSeuratObject(
  counts = seurat_obj@assays$RNA$counts,
  min.cells = 3,
  min.features = 200,
  project = "pbmc3k"
)

set.seed(1941)
rs <- sample(rownames(pbmc3k@assays$RNA$counts))
cs <- sample(colnames(pbmc3k@assays$RNA$counts))

pbmc3k_c <- CreateSeuratObject(
  counts = pbmc3k@assays$RNA$counts[rs, cs],
  min.cells = 3,
  min.features = 200,
  project = "pbmc3k"
)

pbmc3k_d <- CreateSeuratObject(
  counts = pbmc3k_reorder_cells@assays$RNA$counts[rs, cs],
  min.cells = 3,
  min.features = 200,
  project = "pbmc3k"
)

pbmc3k_v4_c <- seurat_wf_v4(pbmc3k_c)
pbmc3k_v4_d <- seurat_wf_v4(pbmc3k_d)

stopifnot(row.names(pbmc3k_v4_c@meta.data) == row.names(pbmc3k_v4_d@meta.data))
stopifnot(row.names(pbmc3k_v4_c@reductions$pca@cell.embeddings) == row.names(pbmc3k_v4_d@reductions$pca@cell.embeddings))
stopifnot(row.names(pbmc3k_v4_c@reductions$umap@cell.embeddings) == row.names(pbmc3k_v4_d@reductions$umap@cell.embeddings))

DimPlot(pbmc3k_v4_c, reduction = "pca") + DimPlot(pbmc3k_v4_d, reduction = "pca")

Version Author Date
4e49f2d Dave Tang 2025-04-01
identical(
  pbmc3k_v4_c@reductions$pca@cell.embeddings,
  pbmc3k_v4_d@reductions$pca@cell.embeddings
)
[1] TRUE
DimPlot(pbmc3k_v4_c) + DimPlot(pbmc3k_v4_d)

Version Author Date
4e49f2d Dave Tang 2025-04-01
identical(
  pbmc3k_v4_c@reductions$umap@cell.embeddings,
  pbmc3k_v4_d@reductions$umap@cell.embeddings
)
[1] TRUE
table(
  pbmc3k_v4_c@meta.data$seurat_clusters,
  pbmc3k_v4_d@meta.data$seurat_clusters
)
   
       0    1    2    3    4    5    6    7
  0 1182    0    0    0    0    0    0    0
  1    0  491    0    0    0    0    0    0
  2    0    0  351    0    0    0    0    0
  3    0    0    0  307    0    0    0    0
  4    0    0    0    0  162    0    0    0
  5    0    0    0    0    0  161    0    0
  6    0    0    0    0    0    0   32    0
  7    0    0    0    0    0    0    0   14

Summary

Seurat version 5:

  • Re-running Seurat on the same object produced the same UMAP and clustering results.
  • Re-running Seurat on the same data but shuffled genes produced different results.
  • Re-running Seurat on the same data but shuffled barcodes/cells produced different results.

Tim answered with respect to re-ordering cells:

The graph-based clustering algorithm (Louvain, SLM, Leiden, etc.) is non-deterministic. Identical results across different runs of the algorithm are obtained by setting the same random seed. Changing the order of the cells will change the order that nodes are visited during the local moving phase of the algorithm and will potentially change the final cluster identities of cells.

However it is concerning that re-ordering genes produced different results when using Seurat version 5.

Seurat version 4:

  • Re-running Seurat on the same data but shuffled genes produced the same result.
  • Re-running Seurat on the same data but shuffled barcodes/cells produced different results.

Differences can be mitigated if the same order of cells is used.


sessionInfo()
R version 4.4.1 (2024-06-14)
Platform: x86_64-pc-linux-gnu
Running under: Ubuntu 22.04.5 LTS

Matrix products: default
BLAS:   /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3 
LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.20.so;  LAPACK version 3.10.0

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

time zone: Etc/UTC
tzcode source: system (glibc)

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] Seurat_5.2.1       SeuratObject_5.0.2 sp_2.2-0           lubridate_1.9.3   
 [5] forcats_1.0.0      stringr_1.5.1      dplyr_1.1.4        purrr_1.0.2       
 [9] readr_2.1.5        tidyr_1.3.1        tibble_3.2.1       ggplot2_3.5.1     
[13] tidyverse_2.0.0    workflowr_1.7.1   

loaded via a namespace (and not attached):
  [1] RColorBrewer_1.1-3          rstudioapi_0.17.1          
  [3] jsonlite_1.8.9              magrittr_2.0.3             
  [5] spatstat.utils_3.1-2        farver_2.1.2               
  [7] rmarkdown_2.28              zlibbioc_1.52.0            
  [9] fs_1.6.4                    vctrs_0.6.5                
 [11] ROCR_1.0-11                 DelayedMatrixStats_1.28.1  
 [13] spatstat.explore_3.3-4      S4Arrays_1.6.0             
 [15] htmltools_0.5.8.1           SparseArray_1.6.2          
 [17] sass_0.4.9                  sctransform_0.4.1          
 [19] parallelly_1.38.0           KernSmooth_2.23-24         
 [21] bslib_0.8.0                 htmlwidgets_1.6.4          
 [23] ica_1.0-3                   plyr_1.8.9                 
 [25] plotly_4.10.4               zoo_1.8-13                 
 [27] cachem_1.1.0                whisker_0.4.1              
 [29] igraph_2.1.4                mime_0.12                  
 [31] lifecycle_1.0.4             pkgconfig_2.0.3            
 [33] Matrix_1.7-0                R6_2.5.1                   
 [35] fastmap_1.2.0               GenomeInfoDbData_1.2.13    
 [37] MatrixGenerics_1.18.1       fitdistrplus_1.2-2         
 [39] future_1.34.0               shiny_1.10.0               
 [41] digest_0.6.37               colorspace_2.1-1           
 [43] S4Vectors_0.44.0            patchwork_1.3.0            
 [45] ps_1.8.1                    rprojroot_2.0.4            
 [47] tensor_1.5                  RSpectra_0.16-2            
 [49] irlba_2.3.5.1               GenomicRanges_1.58.0       
 [51] labeling_0.4.3              progressr_0.15.0           
 [53] spatstat.sparse_3.1-0       timechange_0.3.0           
 [55] httr_1.4.7                  polyclip_1.10-7            
 [57] abind_1.4-8                 compiler_4.4.1             
 [59] withr_3.0.2                 fastDummies_1.7.5          
 [61] highr_0.11                  MASS_7.3-60.2              
 [63] DelayedArray_0.32.0         tools_4.4.1                
 [65] lmtest_0.9-40               httpuv_1.6.15              
 [67] future.apply_1.11.3         goftest_1.2-3              
 [69] glmGamPoi_1.18.0            glue_1.8.0                 
 [71] callr_3.7.6                 nlme_3.1-164               
 [73] promises_1.3.2              grid_4.4.1                 
 [75] Rtsne_0.17                  getPass_0.2-4              
 [77] cluster_2.1.6               reshape2_1.4.4             
 [79] generics_0.1.3              gtable_0.3.6               
 [81] spatstat.data_3.1-4         tzdb_0.4.0                 
 [83] data.table_1.16.2           hms_1.1.3                  
 [85] XVector_0.46.0              BiocGenerics_0.52.0        
 [87] spatstat.geom_3.3-5         RcppAnnoy_0.0.22           
 [89] ggrepel_0.9.6               RANN_2.6.2                 
 [91] pillar_1.10.1               spam_2.11-1                
 [93] RcppHNSW_0.6.0              later_1.3.2                
 [95] splines_4.4.1               lattice_0.22-6             
 [97] survival_3.6-4              deldir_2.0-4               
 [99] tidyselect_1.2.1            miniUI_0.1.1.1             
[101] pbapply_1.7-2               knitr_1.48                 
[103] git2r_0.35.0                gridExtra_2.3              
[105] IRanges_2.40.1              SummarizedExperiment_1.36.0
[107] scattermore_1.2             stats4_4.4.1               
[109] xfun_0.48                   Biobase_2.66.0             
[111] matrixStats_1.5.0           UCSC.utils_1.2.0           
[113] stringi_1.8.4               lazyeval_0.2.2             
[115] yaml_2.3.10                 evaluate_1.0.1             
[117] codetools_0.2-20            cli_3.6.3                  
[119] uwot_0.2.3                  xtable_1.8-4               
[121] reticulate_1.41.0           munsell_0.5.1              
[123] processx_3.8.4              jquerylib_0.1.4            
[125] GenomeInfoDb_1.42.3         Rcpp_1.0.13                
[127] globals_0.16.3              spatstat.random_3.3-2      
[129] png_0.1-8                   spatstat.univar_3.1-2      
[131] parallel_4.4.1              dotCall64_1.2              
[133] sparseMatrixStats_1.18.0    listenv_0.9.1              
[135] viridisLite_0.4.2           scales_1.3.0               
[137] ggridges_0.5.6              crayon_1.5.3               
[139] rlang_1.1.4                 cowplot_1.1.3